全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
催化学报  2013 

二氧化钛与针铁矿复合光催化材料的制备与光催化性能

DOI: 10.1016/S1872-2067(12)60569-5, PP. 1076-1086

Keywords: 二氧化钛,针铁矿,复合材料,光催化性能,甲基橙

Full-Text   Cite this paper   Add to My Lib

Abstract:

?以四氯化钛为钛源,针铁矿(α-FeOOH)为载体,采用水解沉淀法制备了金红石相二氧化钛(Ti2O)与α-FeOOH的复合光催化材料,并采用X射线衍射、扫描电子显微镜、透射电子显微镜、X射线能量散射谱和X射线光电子能谱对样品进行了表征.结果表明,低温下,金红石相Ti2O包覆于α-FeOOH表面,并形成复合结构;较高温下,铁离子进入金红石相Ti2O晶格,并形成铁掺杂金红石相Ti2O纳米管;中温下,样品兼有复合和掺杂两者特征.在室温下以甲基橙为降解对象,采用钨灯+氘灯(波长200~800nm)为光源,对样品的光催化活性进行了测试.结果表明,样品对甲基橙的光催化降解效果良好;与纯α-FeOOH和金红石相Ti2O相比,不同结构样品的光催化活性均有所提高,其中,复合兼掺杂型样品的光催化活性最高.由此可见,与α-FeOOH复合和铁掺杂是提高Ti2O光催化活性的有效途径.

References

[1]  Huang J D, Wen S H, Liu J Y. J Nat Gas Chem, 2012, 21: 302
[2]  Krishnan V, Heislbetz S, Natile M M, Glisenti A, Bertagnolli H. Mater Chem Phys, 2005, 92: 394
[3]  Chen X Y, Liu S X, Chen X, Sun C L. Acta Phys-Chim Sin (陈孝云, 刘守新, 陈曦, 孙承林. 物理化学学报), 2006, 22: 517
[4]  Heinen O, Holland-Moritz D, Herlach D M. Mater Sci Eng A, 2007, 449: 662
[5]  Chen J Y, Peng T Z. Acta Chim Sin (陈金嫒, 彭图治. 化学学报), 2004, 62: 2093
[6]  Fujishima A, Honda K. Nature, 1972, 238: 37
[7]  Carey J H, Lawrence J. Bull Environ Contarn Toxical, 1976, 16: 697
[8]  Frank S N, Bard A. J Am Chem Soc, 1977, 99: 303
[9]  Chen X B. Chin J Catal (陈晓波. 催化学报), 2009, 30: 839
[10]  Liu C Y. Nano Photocatalysis and Photocatalytic Materials for Environmental Purification. Beijing: Chem Ind Press (刘春艳. 纳米光催化及光催化环境净化材料. 北京: 化学工业出版社), 2007. 125
[11]  Herrmann J M, Guillard C, Disdier J, Lehaut C, Malato S, Blanco J. Appl Catal B, 2002, 35: 281
[12]  Chong M N, Jin B, Chow C W K, Saint C. Water Res, 2010, 44: 2997
[13]  Ding Z, Feng X G, Chen X D, Fu D G, Yuan C W. Environ Sci (丁震, 冯小刚, 陈晓东, 付德刚, 袁春伟. 环境科学), 2006, 27: 1814
[14]  Liu G, Wang L Z, Yang H G, Chen H M, LU G Q. J Mater Chem, 2010, 20: 831
[15]  Zhang R H, Wang Q, Liang J, Li Q, Dai J F, Li W X. Phys B, 2012, 407: 2709
[16]  Zhang D F, Zeng F. Russ J Phy Chem A, 2011, 85: 1825
[17]  Fan X X, Chen X Y, Zhu S P, Li Z S, Yu T, Ye J H, Zou Z G. J Mol Catal A, 2008, 284: 155
[18]  Klosek S, Raftery D. J Phys Chem B, 2001, 105: 2815
[19]  Li X H, Zhang H D, Zheng X X, Yin Z Y, Wei L. J Environ Sci, 2011, 23: 1919
[20]  Liu S X, Chen X Y. J Hazard Mater, 2008, 152: 48
[21]  Liu R L, Ye H Y, Xiong X P, Liu H Q. Mater Chem Phys, 2010, 121: 432
[22]  Tada H, Jin Q L, Nishijima H, Yamamoto H, Fujishima M, Okuoka S I, Hattori T, Sumida Y, Kobayashi H. Angew Chem, Int Ed, 2011, 50: 3501
[23]  Yu X X, Liu S W, Yu J G. Appl Catal B, 2011, 104: 12
[24]  Sajjad A K L, Shamaila S, Tian B Z, Chen F, Zhang J L. Appl Catal B, 2009, 91: 397
[25]  Liang K, Tang L Y, Li G H. J Synthetic Crystals (梁凯, 唐丽永, 李国华. 人工晶体学报), 2011, 40: 1011
[26]  Rawal S B, Chakraborty A K, Lee W I. Bull Korean Chem Soc, 2009, 30: 2613.
[27]  Li G H, Zheng Y F, Ma C A, Tian W. Trans Nonferrous Met Soc China, 2008, 18: 469
[28]  Wang Y F, Wang W, Zheng Y F, Li G H. J Inorg Mater (王燕飞, 王卫, 郑遗凡, 李国华. 无机材料学报), 2013, 28: 177
[29]  Bender H, Chen W D, Portillo J, Van den Hove J, Vandervorst W. Appl Surf Sci, 1989, 38: 37
[30]  Perron H, Vandenborre J, Domain C, Drot R, Roques J, Simoni E, Ehrhardt J J, Catalette H. Surf Sci, 2007, 601: 518
[31]  Xu W X, Zhu S, Fu X C. Appl Surf Sci, 1998, 136: 194
[32]  Hsiung T L, Wang H P, Wang H C. Radiat Phys Chem, 2006, 75: 2042
[33]  Raeburn S P, Ilton E S, Veblen D R. Geochim Cosmochim Acta, 1997, 61: 4519
[34]  Abdel Samad H, Watson P R. Appl Surf Sci, 1998, 136: 46
[35]  Ettireddy P R, Ettireddy N, Mamedov S. Boolchand P, Smirniotis P G. Appl Catal B, 2007, 76: 123
[36]  Kloprogge J T, Duong L V, Wood B J. Frost R L. J Colloid Interface Sci, 2006, 296: 572

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133