OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
Visible-light-inducedphotocatalyticperformancesofZnO-CuOnanocompositesfordegradationof2,4-dichlorophenol
DOI: 10.1016/S1872-2067(15)60886-5, PP. 1263-1272
Keywords: Nanostructures,Coupledmetaloxide,Photocatalyticdegradation,Visiblelightirradiation,Recombination
Abstract:
?NanostructuredZnOandCuO,andcoupledoxides,i.e.,ZnCu,Zn2Cu,andZnCu2,withZnO:CuOmolarratiosof1:1,2:1,and1:2,respectively,weresuccessfullypreparedthroughasimple,one-step,microwave-assistedurea-nitratecombustionsynthesis,withouttheuseoforganicsolventsorsurfactants.ThepreparedsampleswerecharacterizedusingX-raydiffraction,X-rayphotoelectronspectroscopy,scanningelectronmicroscopy,energy-dispersiveX-rayanalysis,transmissionelectronmicroscopy,Fourier-transforminfraredspectroscopy,diffusereflectancespectroscopy,andphotoluminescencespectroscopy.TheopticalabsorptionofZnOextendedintothevisibleregionafterCuOloading.ThephotocatalyticactivitiesofZnO,CuO,andthecoupledoxideswereevaluatedbasedonphotodegradationof2,4-dichlorophenolundervisible-lightirradiation.ThecoupledmetaloxideZn2Cushowedthebestphotocatalyticactivity;thiswasmainlyattributedtotheextendedphotoresponsiverangeandtheincreasedchargeseparationrateinthenanocomposite.Thephotocatalyticdegradationprocessobeyedpseudo-first-orderkinetics.TheresultssuggestthatthecoupledmetaloxideZn2Cuhaspotentialapplicationsasanefficientcatalyticmaterialwithhighefficiencyandrecyclabilityforthephotocatalyticdegradationoforganicpollutantsinaqueoussolutionundervisible-lightirradiation.
References
[1] | Wang Y X, Li X Y, Wang N, Quan X, Chen Y Y. Sep Purif Technol, 2008, 62: 727
|
[2] | Wan X, Liang X Y, Zhang C R, Li X X, Liang W W, Xu H S, Lan S, Tie S L. Chem Eng J, 2015, 272: 58
|
[3] | Liu Y S, Wei S H, Gao W. J Hazard Mater, 2015, 287: 59
|
[4] | Pawinrat P, Mekasuwandumrong O, Panpranot J. Catal Commun, 2009, 10: 1380
|
[5] | Yu Z B, Yin L C, Xie Y P, Liu G, Ma X L, Cheng H M. J Colloid Interface Sci, 2013, 400: 18
|
[6] | Pawar R C, Choi D H, Lee J S, Lee C S. Mater Chem Phys, 2015, 151: 167
|
[7] | Zhan Z Y, Zheng L X, Pan Y Z, Sun G Z, Li L. J Mater Chem, 2012, 22: 2589
|
[8] | Saleh T A, Gondal M A, Drmosh Q A. Nanotechnology, 2010, 21: 495705
|
[9] | Li B J, Cao H Q. J Mater Chem, 2011, 21: 3346
|
[10] | Huang J R, Dai Y J, Gu C P, Sun Y F, Liu J H. J Alloys Compd, 2013, 575: 115
|
[11] | Mageshwari K, Nataraj D, Pal T, Sathyamoorthy R, Park J. J Alloys Compd, 2015, 625: 362
|
[12] | Khemthong P, Photai P, Grisdanurak N. Int J Hydrogen Energy, 2013, 38: 15992
|
[13] | Witoon T, Permsirivanich T, Chareonpanich M. Ceram Int, 2013, 39: 3371
|
[14] | Liu Z L, Deng J C, Deng J J, Li F F. Mater Sci Eng B, 2008, 150: 99
|
[15] | Saravanan R, Karthikeyan S, Gupta V K, Sekaran G, Narayanan V, Stephen A. Mater Sci Eng C, 2013, 33: 91
|
[16] | Gajendiran J, Rajendran V. Mater Lett, 2014, 116: 311
|
[17] | Sathishkumar P, Sweena R, Wu J J, Anandan S. Chem Eng J, 2011, 171: 136
|
[18] | Habibi M H, Karimi B. J Ind Eng Chem, 2014, 20: 925
|
[19] | Chang T Q, Li Z J, Yun G Q, Jia Y, Yang H J. Nano Micro Lett, 2013, 5: 163
|
[20] | Wang J, Fan X M, Wu D Z, Dai J, Liu H, Liu H R, Zhou Z W. Appl Surf Sci, 2011, 258: 1797
|
[21] | Singh K A, Pathak L C, Roy S K. Ceram Int, 2007, 33: 1463
|
[22] | Li J, Pan Y B, Qiu F G, Wu Y S, Guo J K. Ceram Int, 2008, 34: 141
|
[23] | Purohit R D, Sharma B P, Pillai K T, Tyagi A K. Mater Res Bull, 2001, 36: 2711
|
[24] | Jia J, Zhang S, Wang P, Wang H. J Hazard Mater, 2012, 205-206: 150
|
[25] | Pera-Titus M, Garcia-Molina V, Banos M A, Gimenez J, Esplugas S. Appl Catal B, 2004, 47: 219
|
[26] | Chaliha S, Bhattacharyya K G. Chem Eng J, 2008, 139: 575
|
[27] | Krishnakumar B, Imae T, Miras J, Esquena J. Sep Purif Technol, 2014, 132: 281
|
[28] | Cullity B D. Elements of X-ray Diffraction. 3rd Ed. USA: Addison-Wesley, 1967
|
[29] | Singh P, Kaushal A, Kaur D. J Alloy Compd, 2009, 471: 11
|
[30] | Tian G H, Fu H G, Jing L Q, Tian C G. J Hazard Mater, 2009, 161: 1122
|
[31] | Zheng L R, Zheng Y H, Chen C Q, Zhan Y Y, Lin X Y, Zheng Q, Wei K M, Zhu J F. Inorg Chem, 2009, 48: 1819
|
[32] | Zhang Y C, Tang J Y, Wang G L, Zhang M, Hu X Y. J Cryst Growth, 2006, 294: 278
|
[33] | Li B X, Wang Y F. Superlattices Microstruct, 2010, 47: 615
|
[34] | Chow L, Lupan O, Chai G, Khallaf H, Ono L K, Cuenya Roldan B, Tiginyanu I M, Ursaki V V, Sontea V, Schulte A. Sens Actuators A, 2013, 189: 399
|
[35] | Fu M, Li Y, Wu S, Lu P, Liu J, Dong F. Appl Surf Sci, 2011, 258: 1587
|
[36] | Hosseini-Sarvari M, Moeini F. New J Chem, 2014, 38: 624
|
[37] | Pozan G S, Isleyen M, Gokcen S. App Cata B, 2013, 140-141: 537
|
[38] | Lv K Z, Li J, Qing X X, Li W Z, Chen Q Y. J Hazard Mater, 2011, 189: 329
|
[39] | Taylor J H, Amberg C H. Can J Chem, 1961, 39: 535
|
[40] | Butler M.A. J Appl Phys, 1977, 48: 1914
|
[41] | Tauc J. Optical Properties of Solids. Amsterdam: North-Holland, 1972
|
[42] | Anandan S, Vinu A, Venkatachalam N, Arabindoo B, Murugesan V. J Mol Catal A, 2006, 256: 312
|
[43] | Singh S A, Madras G. Sep Purif Technol, 2013, 105: 79
|
[44] | Lam S M, Sin J C, Abdullah A Z, Mohamed A R. J Mol Catal A, 2013, 370: 123.
|
[45] | Ohtani B. J Photochem Photobiol C, 2010, 11: 157
|
[46] | Tang W Z, Huang C P. Water Res, 1995, 29: 745
|
[47] | Nageswara Rao A, Sivasankar B, Sadasivam V. J Mol Catal A, 2009, 306: 77
|
[48] | Bansal P, Sud D. Desalination 2011, 267: 244
|
[49] | Ahmed S, Rasul M G, Brown R, Hashib M A. J Environ Manage, 2011, 92: 311
|
[50] | Lam S M, Sin J C, Abdullah A Z, Mohamed A R. Sep purif Technol, 2014, 132: 378
|
[51] | Wang Z L, Liu Y X, Martin D J, Wang W D, Tang J W, Huang W X. Phys Chem Chem Phy, 2013, 15: 14956
|
[52] | Liu Z Y, Bai H W, Xu S P, Sun D D. Int J Hydrogen Energy, 2011, 36: 13473
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|