全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
催化学报  2015 

Visible-light-inducedphotocatalyticperformancesofZnO-CuOnanocompositesfordegradationof2,4-dichlorophenol

DOI: 10.1016/S1872-2067(15)60886-5, PP. 1263-1272

Keywords: Nanostructures,Coupledmetaloxide,Photocatalyticdegradation,Visiblelightirradiation,Recombination

Full-Text   Cite this paper   Add to My Lib

Abstract:

?NanostructuredZnOandCuO,andcoupledoxides,i.e.,ZnCu,Zn2Cu,andZnCu2,withZnO:CuOmolarratiosof1:1,2:1,and1:2,respectively,weresuccessfullypreparedthroughasimple,one-step,microwave-assistedurea-nitratecombustionsynthesis,withouttheuseoforganicsolventsorsurfactants.ThepreparedsampleswerecharacterizedusingX-raydiffraction,X-rayphotoelectronspectroscopy,scanningelectronmicroscopy,energy-dispersiveX-rayanalysis,transmissionelectronmicroscopy,Fourier-transforminfraredspectroscopy,diffusereflectancespectroscopy,andphotoluminescencespectroscopy.TheopticalabsorptionofZnOextendedintothevisibleregionafterCuOloading.ThephotocatalyticactivitiesofZnO,CuO,andthecoupledoxideswereevaluatedbasedonphotodegradationof2,4-dichlorophenolundervisible-lightirradiation.ThecoupledmetaloxideZn2Cushowedthebestphotocatalyticactivity;thiswasmainlyattributedtotheextendedphotoresponsiverangeandtheincreasedchargeseparationrateinthenanocomposite.Thephotocatalyticdegradationprocessobeyedpseudo-first-orderkinetics.TheresultssuggestthatthecoupledmetaloxideZn2Cuhaspotentialapplicationsasanefficientcatalyticmaterialwithhighefficiencyandrecyclabilityforthephotocatalyticdegradationoforganicpollutantsinaqueoussolutionundervisible-lightirradiation.

References

[1]  Wang Y X, Li X Y, Wang N, Quan X, Chen Y Y. Sep Purif Technol, 2008, 62: 727
[2]  Wan X, Liang X Y, Zhang C R, Li X X, Liang W W, Xu H S, Lan S, Tie S L. Chem Eng J, 2015, 272: 58
[3]  Liu Y S, Wei S H, Gao W. J Hazard Mater, 2015, 287: 59
[4]  Pawinrat P, Mekasuwandumrong O, Panpranot J. Catal Commun, 2009, 10: 1380
[5]  Yu Z B, Yin L C, Xie Y P, Liu G, Ma X L, Cheng H M. J Colloid Interface Sci, 2013, 400: 18
[6]  Pawar R C, Choi D H, Lee J S, Lee C S. Mater Chem Phys, 2015, 151: 167
[7]  Zhan Z Y, Zheng L X, Pan Y Z, Sun G Z, Li L. J Mater Chem, 2012, 22: 2589
[8]  Saleh T A, Gondal M A, Drmosh Q A. Nanotechnology, 2010, 21: 495705
[9]  Li B J, Cao H Q. J Mater Chem, 2011, 21: 3346
[10]  Huang J R, Dai Y J, Gu C P, Sun Y F, Liu J H. J Alloys Compd, 2013, 575: 115
[11]  Mageshwari K, Nataraj D, Pal T, Sathyamoorthy R, Park J. J Alloys Compd, 2015, 625: 362
[12]  Khemthong P, Photai P, Grisdanurak N. Int J Hydrogen Energy, 2013, 38: 15992
[13]  Witoon T, Permsirivanich T, Chareonpanich M. Ceram Int, 2013, 39: 3371
[14]  Liu Z L, Deng J C, Deng J J, Li F F. Mater Sci Eng B, 2008, 150: 99
[15]  Saravanan R, Karthikeyan S, Gupta V K, Sekaran G, Narayanan V, Stephen A. Mater Sci Eng C, 2013, 33: 91
[16]  Gajendiran J, Rajendran V. Mater Lett, 2014, 116: 311
[17]  Sathishkumar P, Sweena R, Wu J J, Anandan S. Chem Eng J, 2011, 171: 136
[18]  Habibi M H, Karimi B. J Ind Eng Chem, 2014, 20: 925
[19]  Chang T Q, Li Z J, Yun G Q, Jia Y, Yang H J. Nano Micro Lett, 2013, 5: 163
[20]  Wang J, Fan X M, Wu D Z, Dai J, Liu H, Liu H R, Zhou Z W. Appl Surf Sci, 2011, 258: 1797
[21]  Singh K A, Pathak L C, Roy S K. Ceram Int, 2007, 33: 1463
[22]  Li J, Pan Y B, Qiu F G, Wu Y S, Guo J K. Ceram Int, 2008, 34: 141
[23]  Purohit R D, Sharma B P, Pillai K T, Tyagi A K. Mater Res Bull, 2001, 36: 2711
[24]  Jia J, Zhang S, Wang P, Wang H. J Hazard Mater, 2012, 205-206: 150
[25]  Pera-Titus M, Garcia-Molina V, Banos M A, Gimenez J, Esplugas S. Appl Catal B, 2004, 47: 219
[26]  Chaliha S, Bhattacharyya K G. Chem Eng J, 2008, 139: 575
[27]  Krishnakumar B, Imae T, Miras J, Esquena J. Sep Purif Technol, 2014, 132: 281
[28]  Cullity B D. Elements of X-ray Diffraction. 3rd Ed. USA: Addison-Wesley, 1967
[29]  Singh P, Kaushal A, Kaur D. J Alloy Compd, 2009, 471: 11
[30]  Tian G H, Fu H G, Jing L Q, Tian C G. J Hazard Mater, 2009, 161: 1122
[31]  Zheng L R, Zheng Y H, Chen C Q, Zhan Y Y, Lin X Y, Zheng Q, Wei K M, Zhu J F. Inorg Chem, 2009, 48: 1819
[32]  Zhang Y C, Tang J Y, Wang G L, Zhang M, Hu X Y. J Cryst Growth, 2006, 294: 278
[33]  Li B X, Wang Y F. Superlattices Microstruct, 2010, 47: 615
[34]  Chow L, Lupan O, Chai G, Khallaf H, Ono L K, Cuenya Roldan B, Tiginyanu I M, Ursaki V V, Sontea V, Schulte A. Sens Actuators A, 2013, 189: 399
[35]  Fu M, Li Y, Wu S, Lu P, Liu J, Dong F. Appl Surf Sci, 2011, 258: 1587
[36]  Hosseini-Sarvari M, Moeini F. New J Chem, 2014, 38: 624
[37]  Pozan G S, Isleyen M, Gokcen S. App Cata B, 2013, 140-141: 537
[38]  Lv K Z, Li J, Qing X X, Li W Z, Chen Q Y. J Hazard Mater, 2011, 189: 329
[39]  Taylor J H, Amberg C H. Can J Chem, 1961, 39: 535
[40]  Butler M.A. J Appl Phys, 1977, 48: 1914
[41]  Tauc J. Optical Properties of Solids. Amsterdam: North-Holland, 1972
[42]  Anandan S, Vinu A, Venkatachalam N, Arabindoo B, Murugesan V. J Mol Catal A, 2006, 256: 312
[43]  Singh S A, Madras G. Sep Purif Technol, 2013, 105: 79
[44]  Lam S M, Sin J C, Abdullah A Z, Mohamed A R. J Mol Catal A, 2013, 370: 123.
[45]  Ohtani B. J Photochem Photobiol C, 2010, 11: 157
[46]  Tang W Z, Huang C P. Water Res, 1995, 29: 745
[47]  Nageswara Rao A, Sivasankar B, Sadasivam V. J Mol Catal A, 2009, 306: 77
[48]  Bansal P, Sud D. Desalination 2011, 267: 244
[49]  Ahmed S, Rasul M G, Brown R, Hashib M A. J Environ Manage, 2011, 92: 311
[50]  Lam S M, Sin J C, Abdullah A Z, Mohamed A R. Sep purif Technol, 2014, 132: 378
[51]  Wang Z L, Liu Y X, Martin D J, Wang W D, Tang J W, Huang W X. Phys Chem Chem Phy, 2013, 15: 14956
[52]  Liu Z Y, Bai H W, Xu S P, Sun D D. Int J Hydrogen Energy, 2011, 36: 13473

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133