全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
催化学报  2015 

MnO2纳米粒子固载纤维素酶用于高效水解农业废弃物制备生物乙醇

DOI: 10.1016/S1872-2067(15)60906-8, PP. 1223-1229

Keywords: 纤维素酶,固定化,二氧化锰,纳米生物催化剂,农业废弃物,水解,生物乙醇

Full-Text   Cite this paper   Add to My Lib

Abstract:

?纤维素酶是一种有效的纤维质类物质水解催化剂,工业应用时可通过固定化纤维素酶来降低其成本.本文将烟曲霉原变种JCF产生的纤维素酶固定在MnO2纳米颗粒上.MnO2可提高纤维素酶的活性,并充当一个更好的载体.采用扫描电镜表征了所制MnO2纳米粒子及其负载纤维素酶的表面性质,以傅里叶变换红外光谱分析了固定在MnO2纳米粒子上纤维素酶的官能团性质.纤维素酶在MnO2纳米粒子上最大的固定化效率为75%.考察了固定化纤维素酶的活性、操作pH值、温度、热稳定性和重复使用性等性质.结果表明,所制固定化酶的稳定性比游离酶更高.固定于MnO2纳米粒子上的纤维素酶可用于纤维质类物质的水解反应,且能在较宽的温度和pH值范围内使用.表征结果证实了该催化剂具有非常高的催化纤维素类物质水解的活性.

References

[1]  Olofsson K, Wiman M, Liden G. J Biotechnol, 2010, 145: 168
[2]  Jagtap S, Rao M. Biochem Biophys Res Commun, 2005, 329: 111
[3]  Gopalakrishnan I K, Bagkar N, Ganguly R, Kulshreshtha S K. J Cryst Growth, 2005, 280: 436
[4]  He X, Wang Z H, Geng D Y, Zhang Z D. J Mater Sci Technol, 2011, 27: 503
[5]  Mei X Y, Liu R H, Shen F, Wu H J. Energy Fuels, 2009, 23: 487
[6]  Han M, Kim Y, Kim Y, Chung B, Choi G W. Korean J Chem Eng, 2011, 28: 119
[7]  Harish Kuma M, Poonam S. Int J Chem Chem Eng, 2013, 3: 155
[8]  Khattak W A, Ul-Islam M, Park J K. Korean J Chem Eng, 2012, 29: 1467
[9]  Verma M L, Chaudhary R, Tsuzuki T, Barrow C J, Puri M. Bioresour Technol, 2013, 135: 2
[10]  Abraham R E, Verma M L, Barrow C J, Puri M. Biotechnol Biofuels, 2014, 7: 90
[11]  Lineweaver H, Burk D. J Am Chem Soc, 1934, 56: 658
[12]  Miller G L. Anal Chem, 1959, 31: 426
[13]  Balasubramanian K, Ambikapathy V, Panneerselvam A. J Microbiol Biotechnol Res, 2011, 1(4): 158
[14]  Guo R, Ding M, Zhang S L, Xu G L, Zhao F K. J Comp Physiol B, 2008, 178: 209
[15]  Walsh G. In: Proteins: Biochemistry and Biotechnology. New York: Wiley, 2001
[16]  Liao H D, Chen D, Yuan L, Zheng M, Zhu Y H, Liu X M. Carbohyd Polym, 2010, 82: 600
[17]  Vaillant F, Millan A, Millan P, Dornier M, Decloux M, Reynes M. Process Biochem, 2000, 35: 989
[18]  Mao X P, Guo G J, Huang J F, Du Z Y, Huang Z S, Ma L, Li P, Gu L Q. J Chem Technol Biotechnol, 2006, 81: 189
[19]  Wu L L, Yuan X Y, Sheng J. J Membr Sci, 2005, 250: 167
[20]  Gupta A K, Gupta M. Biomaterials, 2005, 26: 3995
[21]  Annamalai N, Rajeswari M V, Elayaraja S, Balasubramanian T. Carbohyd Polym, 2013, 94: 409
[22]  Klostergaard J, Seeney C E. Maturitas, 2012, 73: 33
[23]  Sung Y J, Suk H J, Sung H Y, Li T H, Poo H, Kim M G. Biosens Bioelectron, 2013, 43: 432
[24]  Savage N, Diallo M S. J Nanopart Res, 2005, 7: 331
[25]  Anirudhan T S, Rauf T A. Colloids Surf B, 2013, 107: 1
[26]  Tratnyek P G, Johnson R L. Nano Today, 2006, 1: 44
[27]  Ansari S A, Husain Q. Biotechnol Adv, 2012, 30: 512
[28]  Gupta M N, Kaloti M, Kapoor M, Solanki K. Artif Cells Blood Substit Immobil Biotechnol, 2011, 39: 98
[29]  Zhang Y C, Qiao T, Hu X Y. J Solid State Chem, 2004, 177: 4093
[30]  Arica M Y, Bayramoglu G, Bicak N. Process Biochem, 2004, 39: 2007
[31]  Ahmed R, Sardar M. Indian J Biochem Biophys, 2014, 51: 314
[32]  Goldstein L, Levin Y, Katchalski E. Biochemistry, 1964, 3: 1913
[33]  Gokhale A A, Lu J, Lee I. J Mol Catal B, 2013, 90: 76
[34]  Jordan J, Kumar C S S R, Theegala C. J Mol Catal B, 2011, 68: 139
[35]  Cao M, Li Z H, Wang J L, Ge W P, Yue T L, Li R H, Colvin V L, Yu W W. Trends Food Sci Technol, 2012, 27: 47
[36]  Bellamy L J. The infrared Spectra of Complex Molecules. 3rd ed. New York: John Wiley, 1975
[37]  Silverstein R M, Webster F X. Spectrometric Identification of Organic Compounds. 6th ed. New York: John Wiley, 1998
[38]  Jones R P, Pamment N, Greenfield P F. Process Biochem, 1981, 16: 42
[39]  Takagi M, Abe S, Suzuki S, Emert G H, Yata N. In: Ghose T K ed. Proceedings of Bioconversion of Cellulosic Substances into Energy, Chemicals and Microbial Protein. Delhi: Indian Institute of Technology Delhi, 1977. 551
[40]  Zhang Z S, Donaldson A A, Ma X X. Biotechnol Adv, 2012, 30: 913
[41]  Wei W, Yuan T Q, Wang K, Cui B K, Dai Y C. Process Biochem, 2012, 47: 2552
[42]  McKendry P. Bioresour Technol, 2002, 83: 37

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133