全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
催化学报  2015 

碳催化剂用于异丁烷直接脱氢制异丁烯

DOI: 10.1016/S1872-2067(15)60914-7, PP. 1214-1222

Keywords: ,直接脱氢,异丁烷,异丁烯,多相催化

Full-Text   Cite this paper   Add to My Lib

Abstract:

?异丁烯用途广泛,被认为是除乙烯和丙烯外最重要的基础化工原料.异丁烯的来源主要是石油裂化过程中产生的碳四馏分,但随着对其需求量的逐年增加,分离法已逐渐无法满足,因此异丁烷直接脱氢工艺逐渐受到工业界和学术界的重视.铬系和铂系催化剂是两类传统工业催化体系,但铬对环境污染严重,铂作为贵金属成本较高,而且现有工艺大多存在催化剂稳定性较差需要反复再生的问题.近年来碳材料用于烷烃氧化脱氢反应的研究较多,并表现出较高的活性和稳定性,甚至有研究组提出金属催化剂在反应中快速生成的活性积碳(activecoke)可能是真正的催化活性中心.但氧化脱氢反应不同于直接脱氢,需在反应中加入氧气,这在实际生产中会带来一系列问题:考虑到烷烃的爆炸极限,实际应用时反应气必须稀释,这不利于产物的收集;而且氧气会导致反应物过度氧化产生CO和CO2等副产物,也限制了氧化脱氢工艺在工业上的应用和发展.我们研究组将椰壳碳、煤质碳和碳纳米管等碳材料作为催化剂用于催化异丁烷直接脱氢反应,发现碳催化剂表现出较高的催化活性:在625℃,椰壳碳上异丁烷转化率和异丁烯选择性分别为70%和78%,连续反应3d后仍能维持34%的转化率,且选择性基本不变.与铬基催化剂相比,碳催化剂在稳定性方面表现出更大优势.我们进一步采用N2吸脱附、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)和场发射扫描电子显微镜(FE-SEM)等手段对反应前后的碳催化剂进行了详细表征.N2吸脱附结果表明,椰壳碳比表面积高达1190.2m2/g,这可能是其具有较高催化活性的原因;而结合催化剂活性数据,对比反应前后椰壳碳催化剂比表面积和异丁烷转化率可知,两者呈现近乎线性的相关性,进一步证实比表面积大小对碳催化剂催化活性有重要影响.XPS谱图证明椰壳碳在反应前表面除了有少量硅(0.73%)外,不存在金属氧化物等杂质,证实碳材料无需负载氧化物等即可表现出较高的催化活性;反应后沉积的积碳附着在催化剂表面,使硅含量降低至0.47%;催化剂中氧含量也由4.43%降低至3.78%,同时有碳酸盐生成.FTIR谱图进一步证实反应前的椰壳碳表面有丰富的有机官能团,但反应开始后有机官能团很快消失,而催化剂仍保持较高的催化活性,因此有机官能团并非碳催化剂催化活性高的必要因素,这与文献中已报道的结果不同.FE-SEM照片中观察到反应后椰壳碳催化剂表面形成积碳,随着反应时间延长积碳明显增多,这与XPS结果一致.碳材料具有来源广泛、绿色环保等显著优势,可作为一种新的催化体系应用于异丁烷直接脱氢反应,无需负载其他物质或添加氧化性气体即可表现出良好的催化活性和稳定性,其比表面积对催化活性有重要影响,反应中产生的积碳导致催化剂比表面积下降进而降低其催化活性,而有机官能团的存在对催化活性影响不大.

References

[1]  Casella M L, Siri G J, Santori G F, Ferretti O A, Ramírez-Corredores M M. Langmuir, 2000, 16: 5639
[2]  Cortright R D, Hill J M, Dumesic J A. Catal Today, 2000, 55: 213
[3]  Tasbihi M, Feyzi F, Amlashi M A, Abdullah A Z, Mohamed A R. Fuel Process Technol, 2007, 88: 883
[4]  Korhonen S T, Airaksinen S M K, Bańares M A, Krause A O I. Appl Catal A, 2007, 333: 30
[5]  Neri G, Pistone A, De Rossi S, Rombi E, Milone C, Galvagno S. Appl Catal A, 2004, 260: 75
[6]  Airaksinen S M K, Harlin M E, Krause A O I. Ind Eng Chem Res, 2002, 41: 5619
[7]  Schwartz V, Xie H, Meyer H M III, Overbury S H, Liang C D. Carbon, 2011, 49: 659
[8]  de Jesús Díaz Velásquez J, Suárez L M C, Figueiredo J L. Appl Catal A, 2006, 311: 51
[9]  Zhang J, Jin Y, Li C Y, Shen Y N, Han L, Hu Z X, Di X W, Liu Z L. Appl Catal B, 2009, 91: 11
[10]  Jang D Y, Jang H G, Kim G R, Kim G J. Res Chem Intermed, 2011, 37: 1145
[11]  Liu X, Frank B, Zhang W, Cotter T P, Schl?gl R, Su D S. Angew Chem Int Ed, 2011, 50: 3318
[12]  Zhang J, Liu X, Blume R, Zhang A H, Schl?gl R, Su D S. Science, 2008, 322: 73
[13]  Liang C D, Xie H, Schwartz V, Howe J, Dai S, Overbury S H. J Am Chem Soc, 2009, 131: 7735
[14]  Goh H W, Goh S H, Xu G Q, Pramoda K P, Zhang W D. Chem Phys Lett, 2003, 379: 236
[15]  Rodriguez N M, Chambers A, Baker R T K. Langmuir, 1995, 11: 3862
[16]  Deng H, Yang L, Tao G H, Dai J L. J Hazard Mater, 2009, 166: 1514
[17]  Deng H, Zhang G L, Xu X L, Tao G H, Dai J L. J Hazard Mater, 2010, 182: 217
[18]  Zhong M, Wang Y, Yu J, Tian Y J, Xu G W. Particuology, 2012, 10: 35
[19]  Zimmermann H, Versluis F. US Patent 5 378 350. 1995
[20]  Buonomo F, Jezzi R, Notari B, Kotelnikov G R, Mikhailov K R, Patanov V A. US Patent 4 746 643. 1988
[21]  Bentahar F Z, Candy J P, Basset J M, Le Peltier F, Didillon B. Catal Today, 2001, 66: 303
[22]  Siri G J, Ramallo-López J M, Casella M L, Fierro J L G, Requejo F G, Ferretti O A. Appl Catal A, 2005, 278: 239
[23]  Delsarte S, Maugé F, Grange P. J Catal, 2001, 202: 1
[24]  Iezzi R, Buonomo F, Sanfilippo D. US Patent 5 143 886. 1992
[25]  Herber R R, Thompson G J. US Patent 4 806 624. 1989
[26]  Nesterenko N S, Ponomoreva O A, Yuschenko V V, Ivanova I I, Testa F, Di Renzo F, Fajula F. Appl Catal A, 2003, 254: 261
[27]  Ogonowski J, Skrzyńska E. Catal Lett, 2006, 111: 79
[28]  Wang G W, Li C Y, Shan H H. ACS Catal, 2014, 4: 1139
[29]  Xie H, Wu Z L, Overbury S H, Liang C D, Schwartz V. J Catal, 2009, 267: 158
[30]  McGregor J, Huang Z Y, Parrott E P J, Zeitler J A, Nguyen K L, Rawson J M, Carley A, Hansen T W, Tessonnier J P, Su D S, Teschner D, Vass E M, Knop-Gericke A, Schl?gl R, Gladden L F. J Catal, 2010, 269: 329
[31]  Dathar G K P, Tsai Y T, Gierszal K, Xu Y, Liang C D, Rondinone A J, Overbury S H, Schwartz V. ChemSusChem, 2014, 7: 483
[32]  Zhang J, Su D S, Zhang A H, Wang D, Schl?gl R, Hébert C. Angew Chem Int Ed, 2007, 46: 7319
[33]  Su D S, Maksimova N I, Mestl G, Kuznetsov V L, Keller V, Schl?gl R, Keller N. Carbon, 2007, 45: 2145
[34]  Zarubina V, Nederlof C, van der Linden B, Kapteijn F, Heeres H J, Makkee M, Melián-Cabrera I. J Mol Catal A, 2014, 381: 179
[35]  Abello M C, Gomez M F, Cadús L E. Ind Eng Chem Res, 1996, 35: 2137
[36]  Su D S, Delgado J J, Liu X, Wang D, Schl?gl R, Wang L F, Zhang Z, Shan Z C, Xiao F S. Chem Asian J, 2009, 4: 1108
[37]  Kondratenko E V, Baerns M. Appl Catal A, 2001, 222: 133
[38]  Bulánek R, Wichterlová B, Novoveská K, Kreibich V. Appl Catal A, 2004, 264: 13
[39]  Ansari M B, Park S E. Energy Environ Sci, 2012, 5: 9419
[40]  Michorczyk P, Pietrzyk P, Ogonowski J. Microporous Mesoporous Mater, 2012, 161: 56
[41]  Liu X, Su D S, Schl?gl R. Carbon, 2008, 46: 547
[42]  Liu D, Lei J H, Guo L P, Qu D Y, Li Y, Su B L. Carbon, 2012, 50: 476
[43]  Shim J W, Park S J, Ryu S K. Carbon, 2001, 39: 1635
[44]  Xu G W, Ikegami M, Honma S, Ikeda K, Mao X X, Nagaishi H. Energy Fuels, 2003, 17: 779
[45]  Das S, Sharma S, Choudhury R. Energy, 2002, 27: 405
[46]  Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C. Carbon, 2008, 46: 833
[47]  Boehm H P. Carbon, 2002, 40: 145
[48]  Xu C W, Cheng L Q, Shen P K, Liu Y L. Electrochem Commun, 2007, 9: 997

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133