全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
催化学报  2015 

一步温和水热法制备具有改善光催化活性和稳定性的碳包覆CdS纳米粒子

DOI: 10.1016/S1872-2067(15)60827-0, PP. 1077-1085

Keywords: 葡萄糖碳化,碳包覆的硫化镉,光催化降解,可见光,甲基橙

Full-Text   Cite this paper   Add to My Lib

Abstract:

?首次报道在130oC低温条件下,以乙酸镉和葡萄糖分别作为镉源和碳源,硫脲同时充当硫源和葡萄糖水热碳化的催化剂,通过一步水热碳化法制备了碳包覆的CdS(CdS@C)纳米材料.与相同条件下制备的纯CdS相比,合成的CdS@C粒子具有更小的粒子尺寸、良好的分散性以及更均匀的粒子分布.而且,葡萄糖在水热碳化过程中能够促使CdS优先形成立方晶相.此外,粒子表面的碳物种能拓宽CdS的可见光吸收范围,稍微降低它的带隙能,减缓CdS的光生电子-空穴对的复合和光腐蚀.因此,它能改善CdS在可见光辐射下催化氧化降解甲基橙的活性和稳定性.

References

[1]  Zhu L, Jo S B, Ye S, Ullah K, Oh W C. Chin J Catal (催化学报), 2014, 35: 1825
[2]  Li X Y, Chen G H, Po-Lock Y, Kutal C. J Chem Technol Biotechnol, 2003, 78: 1246
[3]  Almeida A R, Moulijn J A, Mul G. J Phys Chem C, 2008, 112: 1552
[4]  Hamid S B A, Tan T L, Lai C W, Samsudin E M. Chin J Catal (催化学报), 2014, 35: 2014
[5]  Lettmann C, Hildenbrand K, Kisch H, Macyk W, Maier W F. Appl Catal B, 2001, 32: 215
[6]  Taranto J, Frochot D, Pichat P. Ind Eng Chem Res, 2007, 46: 7611
[7]  Khan Z, Chetia T R, Vardhaman A K, Barpuzary D, Sastri C V, Qureshi M. RSC Adv, 2012, 2: 12122
[8]  Cao J, Sun J Z, Hong J, Li H Y, Chen H Z, Wang M. Adv Mater, 2004, 16: 84
[9]  Karan S, Mallik B. J Phys Chem C, 2007, 111: 16734
[10]  Podborska A, Gawe? B, Pietrzak ?, Szymańska I B, Jeszka J K, ?asocha W, Szaci?owski K. J Phys Chem C, 2009, 113: 6774
[11]  Wang S M, Liu P, Wang X X, Fu X Z. Langmuir, 2005, 21: 11969
[12]  Li X L, Jia Y, Cao A Y. ACS Nano, 2010, 4: 506
[13]  Cao M, Li L, Zhang B L, Huang J, Tang K, Cao H, Sun Y, Shen Y. J Alloys Compd, 2012, 530: 81
[14]  Yang H H, Kershaw S V, Wang Y, Gong X Z, Kalytchuk S, Rogach A L, Teoh W Y. J Phys Chem C, 2013, 117: 20406
[15]  Ferancová A, Rengaraj S, Kim Y, Labuda J, Sillanp?? M. Biosens Bioelectron, 2010, 26: 314
[16]  Hu Y, Liu Y, Qian H S, Li Z Q, Chen J F. Langmuir, 2010, 26: 18570
[17]  Yan J J, Wang K, Xu H, Qian J, Liu W, Yang X W, Li H M. Chin J Catal (严佳佳, 王坤, 许晖, 钱静, 刘巍, 杨兴旺, 李华明. 催化学报), 2013, 34, 1876.
[18]  Mi Q, Chen D Q, Hu J C, Huang Z X, Li J L. Chin J Catal (米倩, 陈带全, 胡军成, 黄正喜, 李金林. 催化学报), 2013, 34: 2138
[19]  Kudo A, Miseki Y. Chem Soc Rev, 2009, 38: 253
[20]  Silva L A, Ryu S Y, Choi J, Choi W, Hoffmann M R. J Phys Chem C, 2008, 112: 12069
[21]  Boxi S S, Paria S. RSC Adv, 2014, 4: 37752
[22]  Luo M, Liu Y, Hu J C, Liu H, Li J L. ACS Appl Mater Interfaces, 2012, 4: 1813
[23]  Park C Y, Ghosh T, Meng Z D, Kefayat U, Vikram N, Oh W C. Chin J Catal (催化学报), 2013, 34: 711
[24]  Li Y Y, Liu J P, Huang X T, Yu J G. Dalton Trans, 2010, 39: 3420
[25]  Ren W J, Ai Z H, Jia F L, Zhang L Z, Fan X X, Zou Z G. Appl Catal B, 2007, 69: 138
[26]  Ge S X, Jia H M, Zhao H X, Zheng Z, Zhang L Z. J Mater Chem, 2010, 20: 3052
[27]  Hu Y, Gao X H, Yu L, Wang Y R, Ning J Q, Xu S J, Lou X W. Angew Chem Int Ed, 2013, 52: 5636
[28]  Xu C K, Killmeyer R, Gray M L, Khan S U M. Appl Catal B, 2006, 64: 312
[29]  Shen S H, Guo L J, Chen X B, Ren F, Mao S S. Int J Hydrogen Energy, 2010, 35: 7110
[30]  Yang F, Yan N N, Huang S, Sun Q, Zhang L Z, Yu Y. J Phys Chem C, 2012, 116: 9078
[31]  Liu Y, Zhou M J, Hu Y, Qian H S, Chen J F, Hu X. CrystEngComm, 2012, 14: 4507
[32]  Yu J G, Ma T T, Liu S W. Phys Chem Chem Phys, 2011, 13: 3491
[33]  Zhong J, Chen F, Zhang J L. J Phys Chem C, 2010, 114: 933
[34]  Mau A W H, Huang C B, Kakuta N, Bard A J, Campion A, Fox M A, White J M, Webber S E. J Am Chem Soc, 1984, 106: 6537
[35]  Zhang L W, Fu H B, Zhu Y F. Adv Funct Mater, 2008, 18: 2180
[36]  Bao N Z, Shen L M, Takata T, Domen K, Gupta A, Yanagisawa K, Grimes C A. J Phys Chem C, 2007, 111: 17527
[37]  Li H T, He X D, Kang Z H, Huang H, Liu Y, Liu J L, Lian S Y, Tsang C H A, Yang X B, Lee S T. Angew Chem Int Ed, 2010, 49: 4430
[38]  Kang Z H, Tsang C H A, Wong N B, Zhang Z D, Lee S T. J Am Chem Soc, 2007, 129: 12090
[39]  Kang Z H, Liu Y, Tsang C H A, Ma D D, Fan X, Wong N B, Lee S T. Adv Mater, 2009, 21: 661
[40]  Wang W, Gu B H, Liang L Y, Hamilton W. J Phys Chem B, 2003, 107: 3400
[41]  Sato S. Langmuir, 1988, 4: 1156
[42]  Li Y Y, Liu J P, Huang X T. Nanoscale Res Lett, 2008, 3: 365
[43]  Liu Y, Yu Y X, Zhang W D. J Alloys Compd, 2013, 569: 102
[44]  Kar A, Kundu S, Patra A. RSC Adv, 2012, 2: 10222
[45]  Yan H J, Yang J H, Ma G J, Wu G P, Zong X, Lei Z B, Shi J Y, Li C. J Catal, 2009, 266: 165
[46]  Lee D K, Cho I S, Lee S, Bae S T, Noh J H, Kim D W, Hong K S. Mater Chem Phys, 2010, 119: 106
[47]  Liang H W, Zhang W J, Ma Y N, Cao X, Guan Q F, Xu W P, Yu S H. ACS Nano, 2011, 5: 8148
[48]  Hu B, Wang K, Wu L H, Yu S H, Antonietti M, Titiriciet M M. Adv Mater, 2010, 22: 813
[49]  Wang G X, Liu H, Liu J, Qiao S Z, Lu G M, Munroe P, Ahn H. Adv Mater, 2010, 22: 4944
[50]  Sun X M, Li Y D. Angew Chem Int Ed, 2004, 43: 597
[51]  Sasikala G, Thilakan P, Subramanian C. Sol Energy Mater Sol Cells, 2000, 62: 275
[52]  Fu H B, Pan C S, Yao W Q, Zhu Y F. J Phys Chem B, 2005, 109: 22432
[53]  Weller H. Angew Chem Int Ed, 1993, 32: 41
[54]  Unni C, Philip D, Smitha S L, Nissamudeen K M, Gopchandran K G. Spectrochim Acta A, 2009, 72: 827
[55]  Peng Q, Dong Y J, Li Y D. Angew Chem Int Ed, 2003, 42: 3027
[56]  Sakaki T, Shibata M, Miki T, Hirosue H, Hayashi N. Bioresour Technol, 1996, 58: 197

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133