OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
Bi掺杂NaTaO3中Bi的化学价态对其光催化性能的影响
DOI: 10.1016/S1872-2067(15)60858-0, PP. 969-974
Keywords: 光催化剂,钽酸钠,Bi掺杂,化学价态,水分解
Abstract:
?分别采用NaBiO3和Bi(NO3)3为Bi源制备了Bi掺杂NaTaO3光催化剂,研究了Bi离子的价态对NaTaO3光催化分解水制氢性能的影响.采用X射线衍射(XRD)、拉曼光谱、X射线光电子能谱(XPS)和紫外-可见吸收光谱研究了催化剂的晶体结构、Bi离子的化学状态和催化剂的光学吸收性能.以光催化分解水制氢反应研究了Bi离子掺杂NaTaO3的催化性能.XRD结果表明,对于两个不同Bi源掺杂的NaTaO3样品,Bi离子的掺杂没有改变催化剂的单斜相结构,但拉曼光谱证实Bi离子的掺杂致使Ta-O-Ta键角偏离了180°.XPS结果表明,以Bi(NO3)3为Bi源时,Bi离子以Bi3+掺杂于NaTaO3的A位;当以NaBiO3为原料时,Bi3+和Bi5+共掺杂于NaTaO3的A位.两种不同Bi源掺杂得到的样品在紫外-可见吸收光谱中给出了相似的光学吸收,但Bi3+的掺杂对NaTaO3光催化性能影响不大,而Bi3+和Bi5+共掺杂大大提高了NaTaO3的光解水制氢性能.Bi离子取代Na离子在A位的掺杂,在NaTaO3结构中引入了能够促进载流子分离的空位和缺陷;与此同时,Bi的掺杂导致Ta-O-Ta键角偏离180o而不利于载流子迁移.对于Bi3+掺杂的NaTaO3样品,这两种作用相互抵消,使得其催化性能与NaTaO3相比没有变化;而Bi3+和Bi5+的共掺杂和高价态Bi5+的掺杂引入了更多的空位和缺陷,提高了光生电子-空穴的分离效率,从而提高了光催化产氢性能.研究表明,光催化过程中载流子的迁移是影响催化性能的重要因素,而在ABO3钙钛矿结构的A位引入高价态离子是促进光生载流子分离的有效途径.
References
[1] | Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. Nature, 2006, 440: 295
|
[2] | Kang H W, Kim E J, Park S B. Int J Photoenergy, 2008, Article ID 519643
|
[3] | Kato H, Kobayashi H, Kudo A. J Phys Chem B, 2002, 106: 12441
|
[4] | Ishihara T, Nishiguchi H, Fukamachi K, Takita Y. J Phys Chem B, 1999, 103: 1
|
[5] | Mizoguchi H, Ueda K, Orita M, Moon S C, Kajihara K, Hirano M, Hosono H. Mater Res Bull, 2002, 37: 2401
|
[6] | Ouyang S X, Tong H, Umezawa N, Cao J Y, Li P, Bi Y P, Zhang Y J, Ye J H. J Am Chem Soc, 2012, 134: 1974
|
[7] | Kudo A, Miseki Y. Chem Soc Rev, 2009, 38: 253
|
[8] | Ditzig J, Liu H, Logan B E. Int J Hydrogen Energy, 2007, 32: 2296
|
[9] | Kudo A, Niishiro R, Iwase A, Kato H. Chem Phys, 2007, 339: 104
|
[10] | Kang H W, Lim S N, Park S B. Int J Hydrogen Energy, 2012, 37: 4026
|
[11] | Gao Y, Su Y G, Meng Y, Wang S W, Jia Q Y, Wang X J. Integr Ferroelectr, 2011, 127: 106
|
[12] | Liu Y L, Su Y G, Han H, Wang X J. J Nanosci Nanotechnol, 2013, 13: 853
|
[13] | Husin H, Su W N, Chen H M, Pan C J, Chang S H, Rick J, Chuang W T, Sheu H S, Hwang B J. Green Chem, 2011, 13: 1745
|
[14] | Hu C C, Lee Y L, Teng H S. J Mater Chem, 2011, 21: 3824
|
[15] | Li X, Zang J L. Catal Commun, 2011, 12: 1380
|
[16] | Iwase A, Kato H, Kudo A. ChemSusChem, 2009, 2: 873
|
[17] | Kudo A, Kato H. Chem Phys Lett, 2000, 331: 373
|
[18] | Zhou X, Shi J Y, Li C. J Phys Chem C, 2001, 115: 8305
|
[19] | Shi J Y, Chen T, Zhou G H, Feng Z C, Ying P L, Li C. Chem J Chin Univ (石建英, 陈涛, 周国华, 冯兆池, 应品良, 李灿. 高等学校化学学报), 2007, 28: 692
|
[20] | Shi J Y, Cui H N, Liang Z X, Lu X H, Tong Y X, Su C Y, Liu H. Energy Environ Sci, 2011, 4: 466
|
[21] | Perry C H, Tornberg N E. Phys Rev, 1969, 183: 595
|
[22] | Hu C C, Teng H. Appl Catal A, 2007, 331: 44
|
[23] | Sidorov N V, Palatnikov M N, Mel’nik N N, Kalinnikov V T. J Appl Spectroscopy, 2000, 67: 259
|
[24] | Reddy K H, Martha S, Parida K M. RSC Adv, 2012, 2: 9423
|
[25] | Kanhere P, Nisar J, Tang Y X, Pathak B, Ahuja R, Zheng J W, Chen Z. J Phys Chem C, 2012, 116: 22767
|
[26] | Kang H W, Lim S N, Park S B, Park A H A. Int J Hydrogen Energy, 2013, 38: 6323
|
[27] | Liu H M, Nakamura R, Nakato Y. J Electrochem Soc, 2005, 152: G856
|
[28] | Konig J, Jancar B, Suvorov D. J Am Ceram Soc, 2007, 90: 3621
|
[29] | Wang X J, Bai H L, Meng Y, Zhao Y H, Tang C H, Gao Y. J Nanosci Nanotechnol, 2010, 10: 1788
|
[30] | Kanhere P D, Zheng J W, Chen Z. J Phys Chem C, 2011, 115: 11846
|
[31] | Li Z G, Wang Y X, Liu J W, Chen G, Li Y X, Zhou C. Int J Hydrogen Energy, 2009, 34: 147
|
[32] | Shi R, Lin J, Wang Y J, Xu J, Zhu Y F. J Phys Chem C, 2010, 114: 6472
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|