全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
催化学报  2014 

N2/Ar等离子体改性对CuO/TiO2可见光光催化活性的影响

DOI: 10.1016/S1872-2067(14)60143-1, PP. 1752-1760

Keywords: 二氧化钛,等离子体,改性,氮掺杂,

Full-Text   Cite this paper   Add to My Lib

Abstract:

?研究了N2/Ar介质阻挡放电处理对负载CuO的TiO2可见光光催化活性的影响.采用X射线衍射、紫外-可见分光吸收光谱、透射电镜、X射线光电子能谱和电子自旋共振进行了表征,详细考察了等离子改性参数包括气氛组成、处理时间和处理功率对改性效果的影响,并通过降解甲基橙溶液考察了可见光光催化活性.结果表明,最佳等离子处理条件为N2与Ar比例为8:2,处理时间为20min,放电电流为1.0A.最后,使用改性后的光催化剂对模拟含汞废水进行了处理.

References

[1]  Chen X B, Mao S S. Chem Rev, 2007, 107: 2891
[2]  Pelaez M, Nolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G, Dunlop P S M, Hamilton J W J, Byrne J A, O'Shea K, Entezari M H, Dionysiou D D. Appl Catal B, 2012, 125: 331
[3]  Zou Z, Ye J H, Sayama K, Arakawa H. Nature, 2001, 414: 625
[4]  Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269
[5]  Morikawa T, Irokawa Y, Ohwaki T. Appl Catal A, 2006, 314: 123
[6]  Yu X L, Wang Y, Meng X J, Yang J J. Chin J Catal (于新娈, 王岩, 孟祥江, 杨建军. 催化学报), 2013, 34: 1418
[7]  Trejo-Tzab R, Alvarado-Gil J J, Quintana P, Bartolo-Pérez P. Catal Today, 2012, 193: 179
[8]  Wang M Y, Sun L, Lin Z Q, Cai J H, Xie K P, Lin C J. Energy Environ Sci, 2013, 6: 1211
[9]  Cheng W Y, Yu T H, Chao K J, Lu S Y. ChemCatChem, 2014, 6: 293
[10]  Livraghi S, Paganini M C, Giamello E, Selloni A, Di Valentin C, Pacchioni G. J Am Chem Soc, 2006, 128: 15666
[11]  Liu G, Yang H G, Wang X W, Cheng L N, Pan J, Lu G Q, Cheng H M. J Am Chem Soc, 2009, 131: 12868
[12]  Shankar K, Tep K C, Mor G K, Grimes C A. J Phys D, 2006, 39: 2361
[13]  Shen H, Mi L, Xu P, Shen W D, Wang P N. Appl Surf Sci, 2007, 253: 7024
[14]  Zhou W Q, Yu C L, Fan Q Z, Wei L F, Chen J C, Yu J C. Chin J Catal (周晚琴, 余长林, 樊启哲, 魏龙福, 陈建钗, Yu J C. 催化学报), 2013, 34: 1250
[15]  Pulsipher D J V, Martin I T, Fisher E R. ACS Appl Mater Interfaces, 2010, 2: 1743
[16]  Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi K. J Mol Catal A, 2000, 161: 205
[17]  Huang C M, Chen L C, Cheng K W, Pan G T. J Mol Catal A, 2007, 261: 218
[18]  Chae Y K, Mori S, Suzuki M. Thin Solid Films, 2009, 517: 4260
[19]  Hu S Z, Li F Y, Fan Z P. J Hazard Mater, 2011, 196: 248
[20]  Kawakami R, Niibe M, Takeichi A, Mori Y, Konishi M, Kotaka T, Matsunaga F, Takasaki T, Kitano T, Miyazaki T, Inaoka T, Tominaga K. Jpn J Appl Phys, 2012, 51: 08HB04
[21]  Li Y, Wang W N, Zhan Z L, Woo M H, Wu C Y, Biswas P. Appl Catal B, 2010, 100: 386
[22]  Liu L C, Gu X R, Sun C Z, Li H, Deng Y, Gao F, Dong L. Nanoscale, 2012, 4: 6351
[23]  Qiu X Q, Miyauchi M, Sunada K, Minoshima M, Liu M, Lu Y, Li D, Shimodaira Y, Hosogi Y, Kuroda Y, Hashimoto K. ACS nano, 2012, 6: 1609
[24]  Banerjee S, Chakravorty D. EPL (Europhysics Letters), 2000, 52: 468
[25]  Irie H, Miura S, Kamiya K, Hashimoto K. Chem Phys Lett, 2008, 457: 202
[26]  Xing J, Chen Z P, Xiao F Y, Ma X Y, Wen C Z, Li Z, Yang H G. Chem Asia J, 2013, 8: 1265
[27]  Yamada K, Yamane H, Matsushima S, Nakamura H, Ohira K, Kouya M, Kumada K. Thin Solid Films, 2008, 516: 7482
[28]  Cheung S H, Nachimuthu P, Joly A G, Engelhard M H, Bowman M K, Chambers S A. Surf Sci, 2007, 601: 1754
[29]  Viswanathan B, Krishanmurthy K R. Int J Photoenergy, 2012, 2012: 10
[30]  Strunk J, Vining W C, Bell A T. J Phys Chem C, 2010, 114: 16937
[31]  Wang W, Ni Y R, Lu C H, Xu Z Z. Appl Surf Sci, 2014, 290: 125
[32]  Li Q, Zhu X M, Li J T, Pu Y K. J Appl Phys, 2010, 107: 43304
[33]  El-Zeer D M, Dawood N, Elakshar F, Garamoon A A. Eur Phys J-Appl Phys, 2012, 58: 30801
[34]  Harris D C. Quantitative Chemical Analysis. New York: Macmillan, 2010
[35]  López-Mu?oz M J, Aguado J, Arencibia A, Pascual R. Appl Catal B, 2011, 104: 220

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133