全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
催化学报  2014 

多元醇法合成的Pt2.6Sn1Ru0.4/C用作直接乙醇燃料电池高性能阳极催化剂

DOI: 10.1016/S1872-2067(14)60063-2, PP. 1394-1401

Keywords: 直接乙醇燃料电池,阳极催化剂,多元醇法,阳极产物,乙醇氧化效率

Full-Text   Cite this paper   Add to My Lib

Abstract:

?采用多元醇法制备了不同原子比例和载量的PtSnRu/C催化剂,利用透射电镜和X射线光电子能谱表征了所制备催化剂的物化性能,采用直接乙醇燃料电池(DEFC)单池性能测试了其电化学性能,并利用电化学原位光谱、气相色谱和中和滴定分析了乙醇电氧化过程和产物.DEFC单电池测试表明Pt2.6Sn1Ru0.4/C催化剂具有较高的电池性能,其中,以60wt%Pt2.6Sn1Ru0.4/C催化剂为阳极的DEFC性能最高,90℃下最高功率密度为121mW/cm2.电化学原位红外光谱和阳极产物分析表明乙酸、乙醛、乙酸乙酯和CO2是乙醇电化学氧化产物,Pt2.6Sn1Ru0.4/C催化剂上乙醇的氧化效率较高.阳极乙醇氧化活化能和催化剂表面组成分析结果表明,表面组成的相互作用使Pt2.6Sn1Ru0.4/C催化剂具有较低的乙醇氧化活化能和较高的乙醇氧化活性.

References

[1]  Xu Z F, Wang Y X. J Phys Chem C, 2011, 115: 20565
[2]  Song S Q, Wang Y, Shen P K. Chin J Catal (宋树芹, 王毅, 沈培康. 催化学报), 2007, 28: 752
[3]  Karim-Nezhad G, Pashazadeh S, Pashazadeh A. Chin J Catal (催化学报), 2012, 33: 1809
[4]  Purgato F L S, Pronier S, Olivi P, de Andrade A R, Léger J M, Tremiliosi-Filho G, Kokoh K B. J Power Sources, 2012, 198: 95
[5]  Wang Q, Sun G Q, Cao L, Jiang L H, Wang G X, Wang S L, Yang S H, Xin Q. J Power Sources, 2008, 177: 142
[6]  Antolini E, Colmati F, Gonzalez E R. Electrochem Commun, 2007, 9: 398
[7]  Ayoub J M S, De Souza R F B, Silva J C M, Piasentin R M, Spinace E V, Santos M C, Neto A O. Int J Electrochem Sci, 2012, 7: 11351
[8]  Tayal J, Rawat B, Basu S. Int J Hydrogen Energy, 2012, 37: 4597
[9]  Iwasita T, Pastor E. Electrochim Acta, 1994, 39: 531
[10]  Tsiakaras P E. J Power Sources, 2007, 171: 107
[11]  Jiang L H, Colmenares L, Jusys Z, Sun G Q, Behm R J. Electrochim Acta, 2007, 53: 377
[12]  Nakagawa N, Kaneda Y, Wagatsuma M, Tsujiguchi T. J Power Sources, 2012, 199: 103
[13]  Song S Q, Zhou W J, Zhou Z H, Jiang L H, Sun G Q, Xin Q, Leontidis V, Kontou S, Tsiakaras P. Int J Hydrogen Energy, 2005, 30: 995
[14]  Jiang L H, Zang H X, Sun G Q, Xin Q. Chin J Catal (姜鲁华, 臧海霞, 孙公权, 辛勤. 催化学报), 2006, 27: 15
[15]  Zhou Z H, Wang S L, Zhou W J, Wang G X, Jiang L H, Li W Z, Song S Q. Liu J G, Sun G Q, Xin Q. Chem Commun, 2003, 3: 394
[16]  Wang G X, Sun G Q, Wang Q, Wang S L, Sun H, Xin Q. Int J Hydrogen Energy, 2010, 35: 11245
[17]  Wang G X, Takeguchi T, Yamanaka T, Muhamad E N, Mastuda M, Ueda W. Appl Catal B, 2010, 98: 86
[18]  Zhu J, Cheng F Y, Tao Z L, Chen J. J Phys Chem C, 2008, 112: 6337
[19]  Beden B, Morin M C, Hahn F, Lamy C. J Electroanal Chem Interfacial Electrochem, 1987, 229: 353
[20]  Jusys Z, Kaiser J, Behm R J. Phys Chem Chem Phys, 2001, 3: 4650
[21]  Arico A S, Creti P, Antonucci P L, Antonucci V. Electrochem Sol-id-State Lett, 1998, 1: 66
[22]  Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Lèger J M. J Power Sources, 2002, 105: 283
[23]  Zhang J, Tang S H, Liao L Y, Yu W F. Chin J Catal (张洁, 唐水花, 廖龙渝, 郁卫飞. 催化学报), 2013, 34: 1051
[24]  Alzate V, Fatih K, Wang H. J Power Sources, 2011, 196: 10625
[25]  Beyhan S, Leger J M, Kad?rgan F. Appl Catal B, 2013, 130-131: 305
[26]  Beyhan S, Coutanceau C, Leger J M, Napporn T W, Kad?rgan F. Int J Hydrogen Energy, 2013, 38: 6830
[27]  Tayal J, Rawat B, Basu S. Int J Hydrogen Energy, 2011, 36: 14884
[28]  Rousseau S, Coutanceau C, Lamy C, Léger J M. J Power Sources, 2006, 158: 18
[29]  Jiang L H, Sun G Q, Zhou Z Z, Sun S G, Wang Q, Yan S Y, Li H Q, Tian J, Guo J S, Zhou B, Xin Q. J Phys Chem B, 2005, 109: 8774
[30]  Song S, Wang G, Zhou W, Zhao X, Sun G, Xin Q, Kontou S, Tsiakaras P. J Power Sources, 2005, 140: 103
[31]  Zhou W J, Li W Z, Song S Q, Zhou Z H, Jiang L H, Sun G Q, Xin Q, Poulianitis K, Kontou S, Tsiakaras P. J Power Sources, 2004, 131: 217
[32]  García-Rodriguez S, Rojas S, Pena M A, Fierro J L G, Baranton S, Leger J M. Appl Catal B, 2011, 106: 520
[33]  De Souza R F B, Parreira L S, Silva J C M, Simoes F C, Calegaro M L, Giz M J, Camara G A, Neto A O, Santos M C. Int J Hydrogen Energy, 2011, 36: 11519
[34]  Zhang H Y, Cao C H, Zhao J, Lin R, Ma J X. Chin J Catal (张海艳, 曹春晖, 赵健, 林瑞, 马建新. 催化学报), 2012, 33: 222
[35]  Nepel T C M, Lopes P P, Paganin V A, Ticianelli E A. Electrochim Acta, 2013, 88: 217
[36]  Tang S H (唐水花), Lin W F (林文锋), Christensen P A, Haarberg G M. Chin J Catal (催化学报), 2013, 34: 1105
[37]  Wang Q, Sun G Q, Jiang L H, Xin Q, Sun S G, Jiang Y X, Chen S P, Jusys Z, Behm R J. Phys Chem Chem Phys, 2007, 9: 2686
[38]  Thepkaew J, Therdthianwong S, Therdthianwong A, Kucernak A, Wongyao N. Int J Hydrogen Energy, 2013, 38: 9454
[39]  Cunha E M, Ribeiro J, Kokoh K B, de Andrade A R. Int J Hydrogen Energy, 2011, 36: 11034
[40]  Wang G X, Takeguchi T, Muhamad E N, Yamanaka T, Ueda W. Int J Hydrogen Energy, 2011, 36: 3322
[41]  Kim H J, Choi S M, Green S, Tompsett G A, Lee S H, Huber G W, Kim W B. Appl Catal B, 2011, 101: 366
[42]  Wang Q, Sun G Q, Yan S Y, Wang G X, Xin Q, Chen Q S, Li J T, Jiang Y X, Sun S G. Chem J Chin Univ (王琪, 孙公权, 阎世友, 汪国雄, 辛勤, 陈青松, 李君涛, 姜艳霞, 孙世刚. 高等学校化学学报), 2006, 27: 2123
[43]  Kim J H, Choi S M, Nam S H, Seo M H, Choi S H, Kim W B. Appl Catal B, 2008, 82: 89
[44]  Mann J, Yao N, Bocarsly A B. Langmuir, 2006, 22: 10432
[45]  Colmenares L, Wang H, Jusys Z, Jiang L, Yan S, Sun G Q, Behm R J. Electrochim Acta, 2006, 52: 221
[46]  Lu G Q, Sun S G, Cai L R, Chen S P, Tian Z W, Shiu K K. Langmuir, 2000, 16: 778

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133