全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
催化学报  2014 

Co3O4纳米晶催化氧化甲烷的理论研究:C-H键活化的晶面效应及活性中心

DOI: 10.1016/S1872-2067(14)60043-7, PP. 462-467

Keywords: C-H键活化,甲烷氧化,晶面效应,微观动力学分析,离子对活性中心

Full-Text   Cite this paper   Add to My Lib

Abstract:

?甲烷是一种在自然界中大量存在的原材料,在取代原油和合成重要化工产品等许多领域具有潜在的应用价值.然而,由于CH4中C-H键的键能特别大(约~4.5eV),如何实现甲烷的绿色有效转化在化学化工领域仍然是一个挑战.本文采用密度泛函理论对Co3O4(001)和(011)晶面活化甲烷C-H键的机理进行了理论研究,得到了如下结论:(1)CH4的C-H键在Co3O4晶面的解离具有很高的活性,只需要克服大约1eV的能垒;(2)与Co2+相连的Co-O离子对是CH4活化的活性位点,其中两个带正负电荷的离子对C-H解离起着协同作用,帮助产生Co-CH3和O-H物种;(3)(011)面的反应活性明显大于(001)面,与实验的观察一致.本文的计算结果表明,Co3O4纳米晶面对CH4中C-H键的活化表现出明显的晶面效应和结构敏感效应,Co-O离子对活性中心对于活化惰性的C-H键发挥了关键作用.

References

[1]  Wang X, Zhuang J, Peng Q, Li Y D. Nature, 2005, 437: 121
[2]  Somorjai G A, Tao F, Park J Y. Top Catal, 2008, 47: 1
[3]  Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Science, 2007, 316: 732
[4]  Van Santen R A. Acc Chem Res, 2009, 42: 57
[5]  Liotta L F, Carlo G D, Pantaleo G, Veneziaa A M, Deganello G, Merlone Borla E, Pidriac M F. Top Catal, 2007, 42-43: 425
[6]  Hu L H, Sun K Q, Peng Q, Xu B Q, Li Y D. Nano Res, 2010, 3: 363
[7]  Beaufils J P, Barbaux Y. J Appl Cryst, 1982, 15: 301
[8]  Jansson J. J Catal, 2000, 194: 55
[9]  Broqvist P, Panas I, Persson H. J Catal, 2002, 210: 198
[10]  Petitto S C, Marsh E M, Carson G A, Langell M A. J Mol Catal A, 2008, 281: 49
[11]  Delley B. J Chem Phys 1990, 92: 508
[12]  Delley B. J Chem Phys, 2000, 113: 7756
[13]  Perdew J P, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865
[14]  Zasada F, Stelmachowski P, Maniak G, Paul J F, Kotarba A, Sojka Z. Catal Lett, 2009, 127: 126
[15]  Walsh A, Wei S H, Yan Y, Al-Jassim M M, Turner J A, Woodhouse M, Parkinson B A. Phys Rev B, 2007, 76: 165119
[16]  Dutta P, Seehra M S, Thota S, Kumar J. J Phys-Condens Mat, 2008, 20: 015218
[17]  Gulino A, Fragala I. Inorg Chim Acta, 2005, 358: 4466
[18]  Psofogiannakis G, St-Amant A, Ternan M. J Phys Chem B, 2006, 110: 24593
[19]  Molinari M, Parker S C, Sayle D C, Islam M S. J Phys Chem C, 2012, 116: 7073
[20]  Crabtree R H. Chem Rev, 1995, 95: 987
[21]  Copéret C. Chem Rev, 2010, 110: 656
[22]  Enger B C, L?deng R, Holmen A. Appl Catal A, 2008, 346: 1
[23]  Xie X W, Li Y, Liu Z Q, Haruta M, Shen W J. Nature, 2009, 458: 746
[24]  Liu X W, Zhou K B, Wang L, Wang B Y, Li Y D. J Am Chem Soc, 2009, 131: 3140
[25]  Wang Y G, Yoon Y, Glezakou V A, Li J, Rousseau R. J Am Chem Soc, 2013, 135: 10673
[26]  Wang Y G, Mei D H, Li J, Rousseau R. J Phys Chem C, 2013, 117: 23082
[27]  Liotta L F, Carlo G D, Pantaleo G, Deganello G. Catal Commun, 2005, 6: 329
[28]  Liotta L F, Carlo G D, Pantaleo G, Deganello G. Appl Catal B, 2007, 70: 314
[29]  Hu L H, Peng Q, Li Y D. J Am Chem Soc, 2008, 130: 16136
[30]  Ziólkowski J, Barbaux, Y. J Mol Catal, 1991, 67: 199
[31]  Grillo F, Natil M M, Glisenti A. Appl Catal B, 2004, 48: 267
[32]  Delley B. J Phys Chem, 1996, 100: 6107
[33]  Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm J. Comput Mater Sci, 2003, 28: 250
[34]  Xu X L, Chen Z H, Li Y, Chen W K, Li J Q. Surf Sci, 2009, 603: 653
[35]  Jiang D, Dai S. Phys Chem Chem Phys, 2011, 13: 978
[36]  Roth W L. J Phys Chem Solids, 1964, 25: 1
[37]  Patil P S, Kadam L D, Lokhande C D. Thin Solid Films, 1996, 272: 29
[38]  Cheng C S, Serizawa M, Sakata H, Hirayama T. Mater Chem Phys, 1998, 53: 225
[39]  Barreca D, Massignan C, Daolio S, Fabrizio M, Piccirillo C, Armelao L, Tondello E. Chem Mater, 2001, 13: 588
[40]  Wang C C, Wu J Y, Jiang J C. J Phys Chem C, 2013, 117, 6136

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133