全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
催化学报  2015 

钼催化剂结构对其催化气相丙烯环氧化反应选择性的影响

DOI: 10.1016/S1872-2067(15)60961-5, PP. 1900-1909

Keywords: 环氧丙烷,环氧化,氧化钼,光学特性,电化学性质

Full-Text   Cite this paper   Add to My Lib

Abstract:

?考察了Mo基催化剂上空气气相氧化丙烯反应.从无机的和有机金属Mo前驱体出发,采用浸渍法和物理气相沉积法(PVD)制备了不同类型的SiO2负载氧化钼和Mo-Bi复合氧化物催化剂.透射电镜结果证实,所制催化剂上环氧化反应活性与其纳米结构直接有关.催化剂中出现部分或完全结晶的氧化钼相,它们与载体SiO2的相互作用较弱,使得反应生成环氧丙烷的选择性低于10%,而锚合在SiO2上的非结晶的八配位Mo物种上的环氧丙烷选择性达55%以上,此时丙烯转化率约为11%.不同形貌氧化钼的电化学表征结果证实了结构缺陷的重要性.另外,还讨论了Bi对氧化钼催化环氧化活性的直接促进效应.

References

[1]  Nijhuis T A, Makkee M, Moulijn J A, Weckhuysen B M. Ind Eng Chem Res, 2006, 45: 3447
[2]  Pang Y J, Chen X H, Xu C Z, Lei Y J, Wei K M. ChemCatChem, 2014, 6: 876
[3]  Kizilkaya A C, Senkan S, Onal I. J Mol Catal A, 2010, 330: 107
[4]  Shen K, Liu X H, Lu G Z, Miao Y X, Guo Y L, Wang Y Q, Guo Y. J Mol Catal A, 2013, 373: 78
[5]  Monnier J R. Appl Catal A, 2001, 221: 73
[6]  Zheng X, Zhang Q, Guo Y L, Zhan W C, Guo Y, Wang Y S, Lu G Z. J Mol Catal A, 2012, 357: 106
[7]  Chu H, Yang L J, Zhang Q H, Wang Y. J Catal, 2006, 241: 225
[8]  Suo Z H, Jin M S, Lu J Q, Wei Z B, Li C. J Nat Gas Chem, 2008, 17: 184
[9]  Wu G Q, Wang Y Q, Wang L N, Feng W P, Shi H N, Lin Y, Zhang T, Jin X, Wang S H, Wu X X, Yao P X. Chem Eng J, 2013, 215-216: 306
[10]  Liu T, Hacarlioglu P, Oyama S T, Luo M F, Pan X R, Lu J Q. J Catal, 2009, 267: 202
[11]  Murata K, Liu Y Y, Mimura N, Inaba M. Catal Commun, 2003, 4: 385
[12]  Hashem A M, Groult H, Mauger A, Zaghib K,Julien C M. J Power Sources, 2012, 219: 126
[13]  Marin Flores O G, Ha S. Appl Catal A, 2009, 352: 124
[14]  Horváth B, Hronec M, Vávra I, ?ustek M, Kri?anová Z, Dérer J, Dobro?ka E. Catal Commun, 2013, 34: 16
[15]  Song Z X, Mimura N, Bravo-Suárez J J, Akita T, Tsubota S, Oyama S T. Appl Catal A, 2007, 316: 142
[16]  Sian T S, Reddy G B. Sol Energy Mater Sol Cells, 2004, 82: 375
[17]  Wang L, Peng B, Peng L N, Guo X F, Xie Z K, Ding W P. Sci Rep, 2013, 3: 2881
[18]  Balula S S, Bruno S M, Gomes A C, Valente A A, Pillinger M, Gon?alves I S, MacQuarrie D J, Clark J H. Inorg Chim Acta, 2012, 387: 234
[19]  Nguyen H H P, Ohkita H, Mizushima T, Kakuta N. Catal Lett, 2013, 143: 902
[20]  Ba?ares M A. Catal Today, 1999, 51: 319
[21]  Rabette P, Olivier D. J Less Common Met, 1974, 36: 299
[22]  Klinbumrung A, Thongtem T, Thongtem S. J Nanomater, 2012: 930763
[23]  Tokarz-Sobieraj R, Hermann K, Witko M, Blume A, Mestl G, Schl?gl R. Surf Sci, 2001, 489: 107
[24]  Yuan S P, Wang J G, Li Y W, Peng S Y. Catal Today, 2000, 61: 243
[25]  Collart O, Van Der Voort P, Vansant E F, Gustin E, Bouwen A, Schoemaker D, Ramachandra Rao R, Weckhuysen B M, Schoonheydt R A. Phys Chem Chem Phys, 1999, 1: 4099
[26]  Balcar H, Mishra D, Marceau E, Carrier X, ?ilková N, Bastl Z. Appl Catal A, 2009, 359: 129
[27]  Jeyakumar K, Chand D K. J Chem Sci, 2009, 121: 111
[28]  Rempel K U, Williams-Jones A E, Migdisov A A. Geochim Cosmochim Acta, 2008, 72: 3074
[29]  Cotton F A, Wilkinson G. Advanced Inorganic Chemistry. 5th ed. New York: John Wiley & Sons, 1988. 829
[30]  Taylor M J, Jirong W, Rickard C E F. Polyhedron, 1993, 12: 1433
[31]  Litinskii A O, Narushis Y P, Shatkovskaya D B. J Struct Chem, 1985, 26: 843
[32]  Spahr M E, Novak P, Haas O, Nesper R. J Power Sources, 1995, 54: 346
[33]  McEvoy T M, Stevenson K J, Hupp J T, Dang X J. Langmuir, 2003, 19: 4316
[34]  Dong W, Mansour A N, Dunn B. Solid State Ionics, 2001, 144: 31
[35]  Kongmark C, Martis V, Rubbens A, Pirovano C, L?fberg A, Sankar G, Bordes-Richard E, Vannier R N, Van Beek W. Chem Commun, 2009: 4850
[36]  Liu Y W, Zhang X M, Suo J S. Chin J Catal (刘义武, 张小明, 索继栓. 催化学报), 2013, 34: 336
[37]  Su J, Zhou J C, Liu C Y, Wang X S, Guo H C. Chin J Catal (苏际, 周军成, 刘春燕, 王祥生, 郭洪臣. 催化学报), 2010, 31: 1195

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133