全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
催化学报  2012 

高比表面积CuPc/TiO2纳米管复合材料的制备及其可见光光催化活性

DOI: 10.3724/SP.J.1088.2012.20126, PP. 1048-1054

Keywords: 二氧化钛,纳米管,酞菁铜,染料敏化,可见光,罗丹明B

Full-Text   Cite this paper   Add to My Lib

Abstract:

?以P25为前驱体,在碱性条件下采用水热法制备了TiO2纳米管(NT),然后通过浸渍法将敏化剂酞菁铜(CuPc)附着于TiO2NT表面,制得可见光响应的CuPc/TiO2NT复合光催化材料,并对其进行了表征,考察了它在可见光下降解罗丹明B的光催化活性.结果表明,在NaOH碱性条件下水热法制备的TiO2NT具有较大的比表面积(362.6m2/g)和高孔容(2.039cm3/g),经0.2%CuPc修饰后,复合材料仍然保持较高的比表面积(244.2m2/g)和孔容(1.024cm3/g),进而提高了CuPc与TiO2界面的光生电荷转移速率,使光生电子-空穴能够在此界面上形成有效分离,从而明显提高了复合材料的光催化活性.在可见光辐照下,0.2%CuPc/TiO2NT复合材料的光催化性能最好,反应180min时,罗丹明B的降解率可达59%,比TiO2NT的提高了3.3倍.

References

[1]  Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H. Adv Mater, 2003, 15: 353
[2]  向全军, 余家国. 催化学报 (Xiang Q J, Yu J G. Chin J Catal), 2011, 32: 525
[3]  Alves W, Ribeiro A O, Pinheiro M V B, Krambrock K, El Haber F, Froyer G, Chauvet O, Ando R A, Souza F L, Alves W A. J Phys Chem C, 2011, 115: 12082
[4]  Ou H H, Lo S L. Sep Purif Technol, 2007, 58: 179
[5]  Zong R L, Zhou J, Li Q, Du B, Li B, Fu M, Qi X W, Li L T, Buddhudu S. J Phys Chem B, 2004, 108: 16713
[6]  Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Langmuir, 1998, 14: 3160
[7]  Cho Y, Choi W, Lee C H, Hyeon T, Lee H I. Environ Sci Technol, 2001, 35: 966
[8]  Tada H, Hattori A, Tokihisa Y, Imai K, Tohge N, Ito S. J Phys Chem B, 2000, 104: 4585
[9]  Kapoor M P, Ichihashi Y, Kuraoka K, Matsumura Y. J Mol Catal A, 2003, 198: 303
[10]  Choi W, Termin A, Hoffmann M R. J Phys Chem, 1994, 98: 13669
[11]  Horst K, Wojciech M. Chem Phys Chem, 2002, 3: 399 3.0.CO;2-H target="_blank">
[12]  Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269
[13]  Yon J N, Lead J R. Sci Total Environ, 2008, 400: 396
[14]  Wang Zh Y, Mao W P, Chen H F, Zhang F A, Fan X P, Qian G D. Catal Commun, 2006, 7: 518
[15]  Mattioli G, Filippone F, Giannozzi P, Caminiti R, Bona-pasta A A. Chem Mater, 2009, 21: 4555
[16]  de Oteyza D G, El-Sayed A, Garcia-Lastra J M, Goiri E, Krauss T N, Turak A, Barrena E, Dosch H, Zegenhagen J, Rubio A, Wakayama Y, Ortega J E. J Chem Phys, 2010, 133: 214703
[17]  de Tacconi N R, Chanmanee W, Rajeshwar K, Rochford J, Galoppini E. J Phys Chem C, 2009, 113: 2996
[18]  郭龙发, 潘海波, 沈水发, 黄金陵. 催化学报 (Guo L F, Pan H B, Shen Sh F, Huang J L. Chin J Catal), 2009, 30: 53
[19]  Kamat P V, Fox M A. Chem Phys Lett, 1983, 102: 379
[20]  Zhang M Y, Shao Ch L, Guo Z C, Zhang Zh Y, Mu J B, Cao T P, Liu Y Ch. ACS Appl Mater Interfaces, 2011, 3: 369
[21]  Shan M N, Wang S S, Bian Z Q, Liu J P, Zhao Y L. Sol Energy Mater Sol Cells, 2009, 93: 1613
[22]  Lee S H, Kim D H, Kim J H, Shim T H, Park J G. Synth Met, 2009, 159: 1705
[23]  Lei Sh B, Yin Sh X, Wang Ch, Wan L J, Bai Ch L. J Phys Chem B, 2004, 108: 224
[24]  Yu J G, Liu Sh W, Yu H G. J Catal, 2007, 249: 59
[25]  Yu J G, Xiang Q J, Zhou M H. Appl Catal B, 2009, 90: 595
[26]  Camp P J, Jones A C, Neely R K, Speirs N M. J Phys Chem A, 2002, 106: 10725
[27]  Ding H M, Zhang X Q, Ram M K, Nicolini C. J Colloid Interface Sci, 2005, 290: 166
[28]  Li H Y, Tripp C P. Langmuir, 2005, 21: 2585
[29]  Tokudome H, Miyauchi M. Chem Lett, 2004, 33: 1108
[30]  刘成林, 张新夷, 钟菊花, 朱以华, 贺博, 韦世强. 光谱学与光谱分析 (Liu Ch L, Zhang X Y, Zhong J H, Zhu Y H, He B, Wei Sh Q. Spectroscopy Spectral Anal), 2007, 27: 1966
[31]  Xu Sh J, Shen J Q, Chen Sh, Zhang M H, Shen T. J Photo-chem Photobiol B, 2002, 67: 64
[32]  Wang Sh Zh, Gao R M, Zhou F M, Selke M. J Mater Chem, 2004, 14: 487
[33]  Mekprasart W, Jarernboon W, Pecharapa W. Mater Sci Eng B, 2010, 172: 231
[34]  Chen Q W, Xu D Sh. J Phys Chem C, 2009, 113: 6310

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133