全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2009 

不同水分处理下紫花苜蓿刈割后残茬的光合变化及其机制

, PP. 192-197

Keywords: 刈割,水分胁迫,紫花苜蓿,光合作用,再生机制

Full-Text   Cite this paper   Add to My Lib

Abstract:

以紫花苜蓿为研究对象,测定了不同水分处理下牧草刈割后残茬光合作用、膜脂过氧化、渗透调节物质及抗氧化酶类物质的变化,初步探讨了刈割后紫花苜蓿光合变化的机制。刈割后较短时间内紫花苜蓿光合速率(Pn)可恢复甚至上升,气孔导度(gs)也有不同程度的增加;刈割后10h,紫花苜蓿丙二醛(MDA)含量下降明显,而脯氨酸(proline)含量增加显著;抗氧化酶(SOD、POD和CAT)活性在刈割后总体迅速上升。不同水分处理下有相同变化趋势,但不同水分处理间差异显著。刈割可能缓解了水分胁迫,减弱了膜脂过氧化程度;渗透调节物质增多,增强了抵抗“刈割”刺激/胁迫的能力;抗氧化酶活性的总体增高,提高了清除“刈割”产生的活性氧的能力,有助于维护光合细胞膜的完整性。总之,细胞膜脂过氧化的减弱、活性氧清除的加强和抵抗胁迫能力的提高,保证了植物器官功能(如气孔运动)的正常甚至超常发挥,从而导致刈割后紫花苜蓿残茬迅速恢复甚至提高光合能力。

References

[1]  Belsky A J. Does herbivory benefit plants: A review of the evidence[J]. American Naturalist, 1986, 127: 870-892.
[2]  Paige K N. Regrowth following ungulate herbivory in Ipmopsis aggregata: Geographic evidence for overcompensation[J]. Oecologia, 1999, 118: 316-323.
[3]  Freeman R S, Brody A K, Neefus C D. Flowering phenology and compensation for herbivory in Ipomopsis aggregata[J]. Oecologia, 2003, 136: 394-401.
[4]  Sharaf K E, Price M V. Does pollination limit tolerance to browsing in Ipomopsis aggregate[J]. Oecologia, 2004, 138: 396-404.
[5]  Nowak R S, Coldwell M M. A test of compensatory photosynthesis in the field: Implications for herbivory tolerance[J]. Oecologia, 1984, 61: 311-318.
[6]  von Caemmerer S, Farquhar G D. Effects of partial defoliation, changes of irradiance during growth, short-term water stress and growth at enhanced p(CO2) on the photosynthetic capacity of leaves of Phaseolus vulgaris L.[J]. Planta, 1984, 160: 320-329.
[7]  Richards J H, Caldwell M M. Soluble carbohydrates, concurrent photosynthesis and efficiency in regrowth following defoliation: A field study with Agropyron species[J]. Journal of Applied Ecology, 1985, 22: 907-920.
[8]  Mabry C M, Wayne P W. Defoliation of the annual herb Abutilon theophrasti: Mechanisms underlying reproductive compensation[J]. Oecologia, 1997, 111: 225-232.
[9]  Thomson V P, Cunningham S A, Ball M C, et al. Compensation for herbivory by Cucumis sativus through increased photosynthetic capacity and efficiency[J]. Oecologia, 2003, 134: 167-175.
[10]  姜华, 毕玉芬, 何承刚. 不同时期刈割对黑麦草生产性能、蛋白质含量及光合效率的影响[J]. 云南农业大学学报, 2003, 18: 149-152.
[11]  Gassmann A J. Effect of photosynthetic efficiency and water availability on tolerance of leaf removal in Amaranthus hybridus[J]. Journal of Ecology, 2004, 92: 882-892.
[12]  李金花, 李镇清. 多花黑麦草早期低刈割的超补偿效应试验[J]. 草业科学, 2005, 22(9): 39-40.
[13]  王海洋, 杜国祯, 任青吉. 种群密度与施肥对垂穗披碱草刈割后补偿作用的影响[J]. 植物生态学报, 2003, 27(4): 67-74.
[14]  Du Z Y, Bramlage W J. Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts[J]. Journal of Agriculture and Food Chemistry, 1992, 40: 1566-1570.
[15]  Bates L S, Waldren R P, Teare I K. Rapid determined of free proline for water stress studies[J]. Plant and Soil, 1973, 39: 205-208.
[16]  陈建勋, 王晓峰. 植物生理学实验指导[M]. 广州: 广州科技出版社, 2006. 21.
[17]  Field C, Mooney H A. The photosynthesis-nitrogen relationship in wild plants[A]. In: Givnish T J. On the Economy of Plant Form and Function[C]. Proceedings of the sixth Maria Moors Cabot Symposium, Cambridge University Press, 1986. 25-55.
[18]  Niinemets U, Portsmuth A, Truus L. Leaf structural and photosynthetic characteristics, and biomass allocation to foliage to relation to foliage content and tree in three Betula species[J]. Annals of Botany, 2002, 1989: 191-204.
[19]  田灵芝, 董召荣, 沈洁, 等. 刈割-追氮对小黑麦抽穗后光合特性的影响[J]. 安徽农业大学学报, 2004, 31(1): 72-75.
[20]  夏景新, 常会宁, 李志坚. 羊茅黑麦草和无芒雀麦叶组织刈割对叶片枯萎的影响[J]. 中国草地, 1996, 5: 17-22.
[21]  孙国荣, 彭永臻, 阎秀峰. 干旱胁迫对白桦实生苗保护酶活性及膜质过氧化作用的影响[J]. 林业科学, 2003, 39(1): 165-167.
[22]  李伯林, 梅慧生. 燕麦叶片衰老与活性氧代谢的关系[J]. 植物生理学报, 1989, 15(1): 6-12.
[23]  Robberecht R, Mahall B E, Nobel P S. Experimental removal of intraspecific competitors-effects on water relations and productivity of a desert bunchgrass, Hilaria rigida[J]. Oecologia, 1983, 60: 21-24.
[24]  全先庆, 张渝洁, 单雷, 等. 脯氨酸在植物生长和非生物胁迫耐受中的作用[J]. 生物技术通讯, 2007, (18): 159-163.
[25]  Holbrook N M, Putz F E. From epiphyte to tree: Differences in leaf structure and leaf water relation associated with the transition in growth form in eight species of hemiepiphytes[J]. Plant Cell and Environment, 1996, 19: 631-642.
[26]  Peltier J P, Marigo G. Drought adaptation in Fraxinus excelsior L.: Physiological basis of the elastic adjustment[J]. Plant Physiology, 1999, 154: 529-535.
[27]  Anjum F, Rishi V, Ahmad F. Compatibility of osmolytes with Gibbs energy of stabilization of routine[J]. Biochimica et Biophysica Acta, 2000, 1476: 75-84.
[28]  Matysik J, Alia B, Mohanty P. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants[J]. Current Science, 2002, 82(5): 525-532.
[29]  Fang X, Li J, Xiong Y, et al. Responses of Caragana korshinskii Kom. to shoot removal: Mechanisms underlying regrowth[J]. Ecological Research, 2008, 23: 863-871.
[30]  曲涛, 南志标. 作物和牧草对干旱胁迫的响应及机理研究进展[J]. 草业学报, 2008, 17(2): 126-135.
[31]  Zhang J X, Kirkham M B. Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species[J]. Plant and Cell Physiology, 1994, 35(5): 785-791.
[32]  张远兵, 刘爱荣, 方蓉. 外源一氧化氮对镉胁迫下黑麦草生长和抗氧化酶活性的影响[J]. 草业学报, 2008, 17(4): 57-64

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133