全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2009 

生长季与非生长季小叶章湿地N2O通量特征及排放贡献

, PP. 242-247

Keywords: N2O通量,生长季,非生长季,小叶章湿地,三江平原

Full-Text   Cite this paper   Add to My Lib

Abstract:

2003年5月-2004年4月,利用静态箱-气相色谱法对生长季与非生长季三江平原小叶章湿地N2O通量特征及排放贡献进行了研究。结果表明,生长季N2O呈脉冲式排放,通量介于0.005~0.111mg/(m2·h),5月较低通量与降水较多有关,6月通量骤然增加与冻层融通有关,7-8月与降水少及蒸发旺盛有关,9月与土壤中较多氮有关。N2O通量与5cm地温呈显著正相关(P<0.01);非生长季N2O表现为“吸收-排放”,通量介于-0.0015~0.0497mg/(m2·h)。N2O通量与气温、土壤融化时间均呈指数关系(P<0.01),说明在冻结期,温度仍是控制微生物活性的主要因素,而在融化期,温度和冻层融通是导致N2O通量迅速增加的重要原因。总之,生长季N2O排放量为205.54mgN2O/m2,为N2O的“源”,非生长季N2O排放量为-26.97mgN2O/m2,为N2O的“汇”,全年N2O排放量为178.57mgN2O/m2,为N2O重要释放“源”。

References

[1]  Regina K. Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity of the peat[J]. Biogeochemistry, 1996, 25: 401-418.
[2]  Bauza J F, Morell J M, Corredor J E. Biogeochemistry of nitrous oxide production in the red mangrove (Rhizophora mangle) forest sediments[J]. Estuarine, Coastal and Shelf Science, 2002, 55: 697-704.
[3]  Tuomainen J M, Hietanen S, Kuparinen J, et al. Baltic Sea cyanobacterial bloom contains denitrification and nitrification genes, but has negligible denitrification activity[J]. FEMS Microbiology Ecology, 2003, 45(2): 83-96.
[4]  Alongi D M, Pfitzner J, Trott L A, et al. Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang Estuary, China[J]. Estuarine, Coastal and Shelf Science, 2005, 63(4): 605-618.
[5]  Gregorich E G, Hopkins D W, Elberling B, et al. Emission of CO2, CH4 and N2O from lakeshore soils in an Antarctic dry valley[J]. Soil Biology & Biochemistry, 2006, 38: 3120-3129.
[6]  Allen D E, Dalal R C, Rennenberg H, et al. Spatial and temporal variation of nitrous oxide and methane flux between subtropical mangrove sediments and the atmosphere[J]. Soil Biology and Biochemistry, 2007, 39(2): 622-631.
[7]  Hashidoko Y, Takakai F, Toma Y, et al. Emergence and behaviors of acid-tolerant Janthinobacterium sp. that evolves N2O from deforested tropical peatland[J]. Soil Biology and Biochemistry, 2008, 40(1): 116-125.
[8]  孙志高, 刘景双, 杨继松, 等. 三江平原典型小叶章湿地土壤硝化-反硝化作用与氧化亚氮排放[J]. 应用生态学报, 2007, 18(1): 185-192.
[9]  王毅勇, 郑循华, 宋长春, 等. 三江平原典型沼泽湿地氧化亚氮通量[J]. 应用生态学报, 2006, 17(3): 493-497.
[10]  宋长春, 王毅勇, 王跃思, 等. 季节性冻融期沼泽湿地CO2、CH4和N2O排放动态[J]. 环境科学, 2005, 26(4): 7-12.
[11]  杨继松, 刘景双, 王金达, 等. 三江平原生长季沼泽湿地CH4、N2O排放及其影响因素[J]. 植物生态学报, 2006, 30(3): 432-440.
[12]  王德宣, 宋长春, 王跃思, 等. 若尔盖高原沼泽湿地N2O排放通量研究[J]. 生态科学, 2005, 24(3): 193-196.
[13]  Pei Z Y, Ouyang H, Zhou C P, et al. Fluxes of CO2、CH4 and N2O from alpine grassland in the tibetan Plateau[J]. Journal of Geographical Sciences, 2003, 13(1): 27-34.
[14]  Pei Z Y, Ouyang H, Zhou C P, et al. N2O exchange within a soil and atmosphere profile in alpine grasslands on the Qinghai-Xizang Plateau[J]. Acta Botanica Sinica, 2004, 46(1): 20-28.
[15]  Wang D Q, Chen Z L, Wang J, et al. Summer-time denitrification and nitrous oxide exchange in the intertidal zone of the Yangtze Estuary[J]. Estuarine, Coastal and Shelf Science, 2007, 73(1-2): 43-53.
[16]  徐继荣, 王友绍, 殷建平, 等. 珠江口入海河段DIN形态转化与硝化和反硝化作用[J]. 环境科学学报, 2005, 25(5): 686-692.
[17]  Zhu R B, Liu Y S, Ma J, et al. Nitrous oxide flux to the atmosphere from two coastal tundra wetlands in eastern Antarctica[J]. Atmospheric Environment, 2008, 42(10): 2437-2447.
[18]  Sun L G, Zhu R B, Xie Z Q, et al. Emissions of nitrous oxide and methane from Antarctic Tundra: Role of penguin dropping deposition[J]. Atmospheric Environment, 2002, 36(31): 4977-4982.
[19]  吴建国, 韩梅, 苌伟, 等. 祁连山中部高寒草甸土壤氮矿化及其影响因素研究[J]. 草业学报, 2007, 16(6): 39-46.
[20]  艾丽, 吴建国, 朱高, 等. 祁连山中部高寒草甸土壤有机碳矿化及其影响因素研究[J]. 草业学报, 2007, 16(5): 22-33.
[21]  韩方虎, 沈禹颖, 王希,等. 苜蓿草地土壤氮矿化的研究[J].草业学报,2009,18(2): 11-17. 浏览
[22]  孙志高, 刘景双, 杨继松, 等. 三江平原小叶章湿地种群生物量结构动态与生长速率分析[J]. 草业学报, 2006, 15(2): 21-29.
[23]  孙志高, 刘景双, 王金达, 等. 三江平原不同群落小叶章种群生物量及氮、磷营养结构动态[J]. 应用生态学报, 2006, 17(2): 221-228.
[24]  Alm J, Saarnio S, Nyknen H, et al. Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands[J]. Biogeochemistriy, 1999, 44: 163-186.
[25]  Bouwman A F. Conclusions and recommendations of the Conference Working Groups[A]. In: Bouwman. Soils and the Greenhouse Effects[M]. Chichester: John Wiley & Sons, 1990.
[26]  IPCC. Changes in atmospheric constituents and in radioactive forcing[A]. Climate Change: The Physical Science Basis[R]. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2007.
[27]  Rodhe H. A comparison of the contribution of various gases to the greenhouse effect[J]. Science, 1990, 248: 1217-1219.
[28]  Prinn R G, Cunnold D M, Rasmussen R. Atmospheric emissions and trends of nitrous oxide deduced from ten years of ALE-GAGE data[J]. Journal of Geophysical Research, 1990, 95: 18369-18385.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133