Ashton P M S, Harris P G, Thadani R. Soil seed bank dynamics in relation to topographic position of a mixed-deciduous forest in southern New England, USA[J]. Forest Ecology and Management, 1998,111:15-22.
[2]
Díaz-Villa M D, Maraón T, Arroyo J, et al. Soil seed bank and floristic diversity in a forest-grassland mosaic in southern Spain[J]. Journal of Vegetation Science, 2003,14:701-709.
[3]
Conn J S. Weed seed bank by tillage intensity for barley in Alaska[J]. Soil & Tillage Research, 2006, 90: 156-161.
[4]
Norbert H, Annette O. Assessing soil seed bank persistence in flood-meadows: The search for reliable traits[J]. Journal of Vegetation Science, 2004,15:93-100.
[5]
Grundy A C, Mead A, Burston S. Modelling the emergence response of weed seeds to burial depth: Interactions with seed density, weight and shape[J]. The Journal of Applied Ecology, 2003,40(4):757-770.
[6]
Parker V T, Simpson R L, Leck M A. Pattern and process in the dynamics of seed banks[A]. Ecology of Soil Seed Banks[M]. New York: Academic Press, 1989.367-384.
[7]
Harper J L. Population Biology of Plants[M]. London: Academic Press, 1977.61-83.
[8]
Mistro D C, Rodrigues L A D, Schmid A B. A mathematical model for dispersal of an annual plant population with a seed bank[J]. Ecological Modelling, 2005,188:52-61.
[9]
Thompson K, Grime J P. Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats[J]. Journal of Ecology, 1979,67:893-921.
[10]
Marone L, Rossi B E, Horno M E. Timing and spatial patterning of seed dispersal and redistribution in a South American warm desert[J]. Plant Ecology, 1998,137:143-150.
[11]
Nathan R, Safriel U N, Noy-Meir I, et al. Spatiotemporal variation in seed dispersal and recruitment near and far from Pius Halepensis trees[J]. Ecology, 2000,81(8):2156-2169.
[12]
Trresen K S, Skuterud R, Tandsaether H J, et al. Long-term experiments with reduced tillage in spring cerealsⅠ. Effects on weed flora, weed seedbank and rain yield[J]. Crop Protection, 2003,22:185-200.
[13]
Moonen A C, Bàrberi P. Size and composition of the weed seedbank after 7 years of different over-crop-maize management systems[J]. Weed Research, 2004,44:163-177.
[14]
Mason T J, French K, Russell K G. Moderate impacts of plant invasion and management regimes in coastal hind dune seed banks[J]. Biological Conservation, 2007,134:428-439.
[15]
Rahman A, James T K, Mellsop J M, et al. Weed seedbank dynamics in maize under different herbicide regimes[J]. New Zealand Plant Protection, 2001,54:168-173.
[16]
Hyatt L A, Casper B B. Seed bank formation during early secondary succession in a temperate deciduous forest[J]. Journal of Ecology, 2000,88:516-527.
[17]
Leishman M R, Masters G J, Clarke I P, et al. Seed bank dynamics: The role of fungal pathogens and climate change[J]. Functional Ecology, 2000,14:293-299.
[18]
Gull B, Weber D J. Seed bank dynamics in a Great Basin salt playa[J]. Journal of Arid Environments, 2001,49:785-794.
[19]
Primack R B. Relationship among flowers, fruits, and seeds[J]. Annual Review of Ecology and Systematics, 1987,18:409-430.
[20]
曹敏. 热带季节雨林更新动态研究[D]. 昆明: 云南大学博士学位论文, 2001.
[21]
Oswald A, Ransom J K. Striga control and improved farm productivity using crop rotation[J]. Crop Protection, 2001,20:113-120.
[22]
Kinloch J E, Friedel M H. Soil seed reserves in arid grazing lands of central Australia. Part 1: Seed bank and vegetation dynamics[J]. Journal of Arid Environments, 2005,60:133-161.
[23]
Pekrum C, Lane P W, Lutman P J W. Modelling seedbank dynamics of volunteer oilseed rape (Brassica napus) [J]. Agricultrual Systems, 2005,84:1-20.
[24]
Feldman S R, Alzugaray C, Torres P S, et al. The effect of different tillage systems on the composition of the seedbank[J]. Weed Research, 1997,37:71-76.
[25]
Reiné R, Chocarro C, Fillat F. Soil seed bank and management regimes of semi-natural mountain meadow communities[J]. Agriculture, Ecosystems and Environment, 2004,104:567-575.
[26]
McDonald A W, Bakker J P, Vegelin K. Seed bank classification and its importance for the restoration of species-rich flooded-meadows[J]. Journal of Vegetation Science, 1996,7:156-164.
[27]
Russi L, Cocks P S, Roberts E H. Seed bank dynanucs in a Mediterranean grassland[J]. Journal of Applied Ecology, 1992,29:763-771.
[28]
Dauber J, Rommeler A, Wolters V. The ant Lasius flavus alters the viable seed bank in pastures[J]. European Journal of Soil Biology, 2006,42:157-163.
[29]
Yan Q L, Liu Z M, Zhu J J, et al. Structure, pattern and mechanisms of formation of seed banks in sand dune systems in northeastern Inner Mongolia, China[J]. Plant and Soil, 2005,277:175-184.
[30]
Vleeshouwers L M, Kropff M. Modelling field emergence patterns in arable weeds[J]. New Phytologist, 2000,148:445-457.
[31]
Florentin S K, Westbrooke M E, Gosney K, et al. The arid land invasive weed Nicotiana glauca R. Graham(Solanaceae): Population and soil seed bank dynamics, seed germination patterns and seedling response to flood and drought[J]. Journal of Arid Environments, 2006,66:218-230.
Hérault B, Hiernaux P. Soil seed bank and vegetation dynamics in Sahelian fallows: The impact of past cropping and current grazing treatments[J]. Journal of Tropical Ecology, 2004,20:683-691.
[34]
Urretavizcaya M F, Defossé G E. Soil seed bank of Austrocedrus chilensis (D. Don) Pic. Serm. et Bizarri related to different degrees of fire disturbance in two sites of southern Patagonia, Argentina[J]. Forest Ecology and Management, 2004,187:361-372.
[35]
Esposito A, Strumia S, Caporaso S, et al. The effect of fire intensity on soil seed bank in Mediterranean macchia[J]. Forest Ecology and Management, 2006,207-234.
[36]
Schafer M, Kotanen P M. The influence of soil moisture on losses of buried seeds to fungi[J]. Acta Oecologica, 2003,24:255-263.
White E, Tucker N, Meyers N, et al. Seed dispersal to revegetated isolated rainforest patches in North Queensland[J]. Forest Ecology and Management, 2004,192:409-426.
[39]
Manzano P, Malo J E, Peco B. Sheep gut passage and survival of Mediterranean shrub seeds[J]. Seed Science Research, 2005,15:21-28.
[40]
Colbach N, Dürr C, Gruber S, et al. Modelling the seed bank evolution and emergence of oilseed rape volunteers for managing co-existence of GM and non-GM varieties[J]. European Journal of Agronomy, 2008, 28: 19-32.
[41]
Mistro D C, Rodrigues L A D, Schmid A B. A mathematical model for dispersal of an annual plant population with a seed bank[J]. Ecological Modelling, 2005,188:52-61.
[42]
Bossuyt B, Butaye J, Honnay O. Seed bank composition of open and overgrown calcareous grassland soils-a case study form Southern Belgium[J]. Journal of Environmental Management, 2006,79:364-371.
[43]
Witkowski E T F, Lamont B B, Connell S J. Seed bank dynamics of three co-occurring banksias in South Coastal Western Australia: The role of plant age, cockatoos, senescence and interfere establishment[J]. Australian Journal of Botany, 1991, 39(4): 385-397.
[44]
Mineke W, Bakker J P. Soil seed bank and driftline composition along a successional gradient on a temperate salt marsh[J]. Applied Vegetation Science, 2002,5:55-62.
[45]
Cavieres L A, Arroyo M T K. Persistent soil seed banks in Phacelia secunda (Hydrophyllaceae): Experimental detection of variation along an altitudinal gradient in the Andes of central Chile(33° S) [J]. Journal of Ecology, 2001,89(1):31-38.
[46]
Fox J F. Germinable seed banks of interior Alaskan USA tundra[J]. Arctic and Alpine Research, 1983,15: 405-412.
[47]
Cummins R P, Miller G R. Altitudinal gradients in seed dynamics of Calluna vulgaris in eastern Scotland[J]. Journal of Vegetation Science, 2002,13:859-866.
[48]
Martin T J, Ogden J. The seed ecology of Ascarina lucida: A rare New Zealand tree adapted to disturbance[J]. New Zealand Journal of Botany, 2002,40:397-404.
[49]
Osem Y, Perevolotsky A, Kigel J. Size traits and site conditions determine changes in seed bank structure caused by grazing exclusion in semiarid annual plant communities[J]. Ecography, 2006,29:11-20.
[50]
Yu S, Bell D, Stemberg M, et al. The effect of microhabitats on vegetation and its relationships with seedings and soil bank in a Mediterranean coastal sand dune community[J]. Journal of Agronomy, 2008, 72: 2040-2053.
[51]
Forcella F. Prediction of weed seedling densities from buried seed reserves[J]. Weed Research, 1992,32:29-38.
[52]
Carol C B, Jerry M B. Seeds Ecology, Biogeography, and Evolution of Dormancy and Germination[M]. San Diego: Academic Press,1998.133-179.
[53]
Boedeltje G, ter Heerdt G N J, Bakker J P. Applying the seedling-emergence method under waterlogged conditions to detect the seed bank of aquatic plants in submerged sediments[J]. Aquatic Botany, 2002,72:121-128.
[54]
Ishikawa-Goto M, Tsuyuzaki S. Methods of estimating seed banks with reference to long-term seed burial[J]. Journal of Plant Research, 2004,117:245-248.
[55]
Cherry J A, Gough L. Temporary floating island formation maintains wetland plant species richness: The role of the seed bank[J]. Aquatic Botany, 2006,85:29-36.
[56]
Brock M A, Rogers K H. The regeneration potential of the seed bank of an ephemeral floodplain in South African[J]. Aquatic Botany, 1998,61:123-135.
[57]
Mamedea M de A, de Araújo F S. Effects if slash and burn practices on a soil seed bank of caatinga vegetation in Norteastern Brazil[J]. Journal of Arid Environments, 2008, 72: 458-470.
[58]
Amiaud B, Touzard B. The relationships between soil seed bank, aboveground vegetation and disturbances in old embanked marshlands of Western France[J]. Flora, 2004,199:25-35.
[59]
Liu G H, Zhou J, Li W, et al. The seed bank in a subtropical freshwater marsh: Implications for wetland restoration[J]. Aquatic Botany, 2005,81:1-11.
[60]
Wolters M, Bakker J P. Soil seed bank and driftline composition along a successional gradient on a temperate salt marsh[J]. Applied Vegetation Science, 2002,5:55-62.
[61]
Hammerstrom K K, Kenworthy W J. A new method for estimation of Halophila decipiens Ostenfeld seed banks using density separation[J]. Aquatic Botany, 2003,76:79-86.
[62]
Hartzler R G, Smidt T B. Utilizing potential weed pressures to improve efficiency of weed management programs[J]. Competitive Grant Report (Leopold Center Progress Reports-USA), 1993,2:37-40.
[63]
Brown D. Estimating the composition of a forest seed bank: A comparison of the seed extraction and seedling emergence methods[J]. Canadian Journal of Botany, 1992,70:1603-1612.
[64]
Simpson R L, Lerck M A, Parker V T. Seed banks: General concepts and methodological issues[A]. Ecology of Soil Seed Banks[M]. New York: Academic Press, 1989.3-8.
[65]
Fenner M, Thompson K. The Ecology of Seeds[M]. UK: Cambridge University Press, 2005.
[66]
Roschewitz I, Gabriel D, Tscharntke T, et al. The effects of landscape complexity on arable weed species diversity in organic and conventional farming[J]. Journal of Applied Ecology, 2005,42:873-882.
[67]
Silvertown J W. Introduction to Plant Population Ecology[M]. New York: Longman Group Limited, 1982.
[68]
Rice K. Impacts of seed banks on grassland community structure and population dynamics[A]. Ecology of Soil Seed Banks[M]. New York: Academic Press, 1989.211-230.
[69]
Parker V T, Kelly V R. Seed banks in California chaparral and other Mediterranean climate shrublands[A]. Ecology of Soil Seed Banks[M]. New York: Academic Press, 1989.231-255.
[70]
Benvenuti S, Falorni C, Simonelli G, et al. Weed seedbank evaluation and relative emergence dynamics in three perennial medicinal crops of organic farming systems[J]. Italian Journal of Agronomy, 2001,5:29-37.
[71]
Symonides E. Seed bank in old-field successional ecosystems[J]. Ekologia Polska, 1986,34:3-29.
[72]
Johnson R G, Anderson R C. The seed bank of a tallgrass prairie in Illinois[J]. American Midland Naturalist, 1986, 115(1):123-130.
[73]
Leckie S, Vellend M, Bell G, et al. The seed bank in an old-growth, temperate deciduous forest[J]. Canadian Journal of Botany, 2000,78:181-192.
[74]
Mengistu T, Teketay D, Hulten H, et al. The role of enclosures in the recovery of woody vegetation in degraded dryland hillsides of central and northern Ethiopia[J]. Journal of Arid Environments, 2005,60:259-281.
[75]
McGraw J B, Vavrek M C. The role of buried viable seeds in Arctic and alpine plant communities[A]. Ecology of Soil Seed Banks[M]. New York: Academic Press, 1989.91-106.
[76]
Baker H G. Some aspects of the natural history of seed banks[A]. Ecology of Soil Seed Banks[M]. New York: Academic Press, 1989.9-21.
[77]
Kalamees R, Zobel M. Soil seed bank composition in different successional stages of a species rich wooded meadow in Laelatu, western Estonia[J]. Acta Oecologica, 1998,19(2):175-180.
[78]
De Villiers A J, Van Rooyen M W, Theron G K. Similarity between the soil seed bank and the standing vegetation in the Strandveld Succulent Karoo, South Africa[J]. Land Degradation & Development, 2003,14:527-540.
[79]
Crawford E R, Young D R. Spatial/temporal variations in shrub thicket soil seed banks on an Atlantic coast Barrier Island[J]. American Journal of Botany, 1998,85(12):1739-1744.
[80]
Assaeed A M, Al-Doss A A. Siuk seed bank of a desert range site infested with Rhazya stricta in Raudhat al-Khafsm, Saudi Arabia[J]. Arid Land Research and Management, 2002,16:83-95.
[81]
Wagner M, Poschlod P, Setchfield R P. Soil seed bank in managed and abandoned semi-natural meadows in Soomaa National Park, Estonia[J]. Annales Botanici Fennici, 2003,40:87-100.
[82]
Peco B, Traba J, Levassor C, et al. Seed size, shape and persistence in dry Mediterranean grass and scrublands[J]. Seed Science Research, 2003,13:87-95.
[83]
Funes G, Basconcelo S, Díaz S, et al. Seed bank dynamics in tall-tussock grasslands along an altitudinal gradient[J]. Journal of Vegetation Science, 2003,14:253-260.
[84]
Leishman M R, Westoby M. Seed size and shape are not related to persistence in soil in Australia in the same way in Britain[J]. Functional Ecology, 1998,12:480-485.
[85]
Moles A T, Hodson D W, Webb C J. Seed size and shape and persistence in the soil in the New Zealand flora[J]. Oikos, 2000,89:541-545.
Thompson K, Bakker J P, Bekker R M. The soil banks of North West Europe[A]. Methodology, Density and Longevity[M]. Landon: Cambridge University Press, 1997.
[88]
Csontos P, Tamás J. Comparisons of soil seed bank classification systems[J]. Seed Science Research, 2003,13:101-111.
[89]
Thompson K, Band S R, Hodgson J G. Seedsize and shape predict persistence in soil[J]. Functional Ecology, 1993, 7:236-241.
[90]
Thompson K, Bakker J P, Bekker R M, et al. Ecological correlates of seed persistence in soil in the north-west European flora[J]. Journal of Ecology, 1998,86:163-169.
[91]
Shaukat S S, Siddiqui I A. Spatial pattern analysis of seeds of an arable soil seed bank and its relationship with above-ground vegetation in an arid region[J]. Journal of Arid Environments, 2004,57:311-327.
[92]
García-Fayos P, Verdú M. Soil seed bank, factors controlling germination and establishment of a Mediterranean shrub: Pistacia lentiscus L.[J]. Acta Oecologica, 1998,19(4):357-366.
[93]
Olano J M, Caballero I, Laskurain N A, et al. Seed bank spatial pattern in a temperate secondary forest[J]. Journal of Vegetation Science, 2002,13(6):775-784.
[94]
Peterson J E, Baldwin A H. Seedling emergence from seed banks of tidal freshwater wetlands: Response to inundation and sedimentation[J]. Aquatic Botany, 2004,78:243-254.
[95]
Guo Q F, Rundel P W, Goodall D W. Structure of desert seed banks: Comparisons across four North American desert sites[J]. Journal of Arid Environments, 1999,42:1-14.
[96]
Gonzalez-Andujar J L. A matrix model for the population dynamics and vertical distribution of weed seedbanks[J]. Ecological Modelling, 1997,97:117-120.
[97]
Boudell J A, Link S O, Johansen J R. Effect of soil microtopography on seed bank distribution in the shrub-steppe[J]. Western North American Naturlalist, 2002,62:14-24.
[98]
Willms W D, Quinton D A. Grazing effects on germinable seeds on the fescue prairie[J]. Journal of Range Management, 1995,48:423-430.
[99]
Perez C J, Waller S S, Moser L E, et al. Seed bank characteristics of a Nebraska sandhills prairie[J]. Journal of Range Management, 1998,51:55-62.
[100]
Akinola M O, Thompson K, Buckland S M. Soil seed bank of an upland calcareous grassland after 6 years of climate and management manipulations[J]. Journal of Applied Ecology, 1998,35:544-552.
[101]
Wilson B G, Witkowski E T F. Seed banks, bark thickness and change in age and size structure (1978-1999)of the African savanna tree, Burkea Africana[J]. Plant Ecology, 2003,167(1):151-162.
[102]
Chambers J C. Seed movements and seedling fates in disturbed sagebrush steppe ecosystems: Impactions for restoration[J]. Ecological Applications, 2000,10(5):1400-1413.
[103]
Adams V M, Marsh D M, Knox J S. Importance of the seed bank for population viability and population monitoring in a threatened wetland herb[J]. Biological Conservation, 2005,124:425-436.
[104]
Page M J, Baxter G S, Lisle A T. Evaluating the adequacy of sampling germinable soil seed banks in semi-arid systems[J]. Jounral of Arid Environments, 2006,64:323-341.
[105]
Mason T J, French K, Russell K G. Moderate impacts of plant invasion and management regimes in coastal hind dune seed banks[J]. Biological Conservation, 2007,134:428-439.
[106]
Thompson K. Small-scale heterogeneity in the seed bank of an acidic grassland[J]. The Journal of Ecology, 1986,74:733-738.
[107]
Bigwood D W, Inouye D W. Spatial pattern analysis of seed banks: Animal proved method and optimized sampling[J]. Ecology, 1988,69(2):497-507.
[108]
Forcella F. A species-area curve for buried viable seeds[J]. Australian Journal of Agricultural Research, 1984,35:645-652.
[109]
Benoit D L, Kenkel N C, Cavers P B. Factorsin fluencing the precision of soil seed bank estimates[J]. Canadian Journal of Botany, 1989,67:2833-2840.