全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2010 

草坪害虫华北大黑鳃金龟幼虫围食膜蛋白Ho-Peritrophin3基因克隆及序列分析

, PP. 147-153

Keywords: 草坪害虫,华北大黑鳃金龟,围食膜蛋白,免疫筛选,序列分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

华北大黑鳃金龟是一种重要的草坪害虫,其幼虫中肠围食膜是害虫生物防治的潜在靶标。本研究利用棉铃虫围食膜蛋白多克隆抗体,从已构建的华北大黑鳃金龟中肠cDNA表达文库中筛选得到一个编码围食膜蛋白的cDNA克隆Ho-Peritrophin3,其cDNA长度为1737bp,在polyA末端上游含有1个多聚腺苷酸信号序列AATAAA,最长开放阅读框(ORF)编码528个氨基酸,与华北大黑鳃金龟围食膜蛋白Ho-Peritrophin2的相似性最高,为64.9%。结构域分析表明,Ho-Peritrophin3只含有较少的O-糖基化位点和N-糖基化位点,不含有类粘蛋白结构域,具有5个几丁质结合功能域(chitinbindingdomain,CBD),它们均由6个保守的半胱氨酸残基组成,与Ho-Peritrophin1、Ho-Peritrophin2羧基端的CBD只含有4个半胱氨酸残基明显不同。Ho-Peritrophin3的胰蛋白酶和胰凝乳蛋白酶的作用位点主要位于5个CBD内部,受到其保护,不会被降解;与Ho-Peritrophin1、Ho-Peritrophin2不同的是在第5个CBD下游区域的107个氨基酸中,有36.3%的氨基酸属于胰蛋白酶和胰凝乳蛋白酶的酶切位点。

References

[1]  冯书亮, 任国栋. 苏云金芽孢杆菌HBF-1及其在有害金龟治理中的应用[M]. 北京: 中国农业科技出版社, 2005: 1-2.
[2]  吴鹏飞, 刘兴良, 刘世荣. 米亚罗亚高山草甸冬春两季土壤动物群落特征的比较[J]. 草业学报, 2009, 18(5): 123-129. 浏览
[3]  李存焕, 杨龙飞, 农向群, 等. 绿僵菌防治高尔夫草坪蛴螬试验[J]. 草业科学, 2008, 25(11): 125-128.
[4]  谢木发. 草坪地下害虫蛴螬及防治[J]. 广东园林, 1999, 1: 46-47.
[5]  马宗仁, 常向前, 郭辉. 高尔夫球场不同功能区草地优势种蛴螬种群生态位分析[J]. 应用生态学报, 2004, 15(8): 1416-1422.
[6]  罗晨, 郭晓军, 张芝利. 京郊草坪蛴螬的种类和为害特点[J]. 昆虫学报, 2008, 51(1): 108-112.
[7]  李帅, 李淑文, 李长友, 等. 鞘翅目害虫-华北大黑鳃金龟围食膜结构的初步研究[J]. 华北农学报, 2008, 23(4): 55-59.
[8]  Toyama K, Bae C H, Kang J G, et al. Production of herbicide-tolerant zoysia grass by Agrobacterium-mediated transformation[J]. Molecular Cells, 2003, 16(1): 19-27.
[9]  Tellam R L, Eisemann C. Chitin is only a minor component of the peritrophic matrix from larvae of Lucilia cuprina[J]. Insect Biochemistry and Molecular Biology, 2000, 30: 1189-1201.
[10]  Shu Q Y, Liu G S, Xu S X, et al. Genetic transformation of Leymus chinensis with the PAT gene through microprojectile bombardment to improve resistance to the herbicide Basta[J]. Plant Cell Reports, 2005, 24: 36-44.
[11]  Bolognesi R, Ribeiro A F, Terra W R. The peritrophic membrane of Spodoptera frugiperda: Secretion of peritrophins and role in immobilization and recycling digestive enzymes[J]. Archives of Insect Biochemistry and Physiology, 2001, 47(2): 62-75.
[12]  Wang Z Y, Bell J, Lehmann D. Transgenic Russian wildrye (Psathyrostachys juncea) plants obtained by biolistic transformation of embryogenic suspension cells[J]. Plant Cell Reports, 2004, 22: 903-909.
[13]  Lehane M J. Peritrophic matrix structure and function[J]. Annual Review of Entomology, 1997, 42: 525-550.
[14]  Takahashi W, Fujimori M, Miura Y, et al. Increased resistance to crown rust disease in transgenic Italian ryegrass (Lolium multiflorum Lam.) expressing the rice chitinase gene[J]. Plant Cell Reports, 2005, 23: 811-818.
[15]  Tellam R L, Eisemann C, Casu R, et al. The intrinsic peritrophic matrix protein peritrophin-95 from larvae of Lucilia cuprina is synthesized in the cardia and regurgitated or excreted as a highly immunogenic protein[J]. Insect Biochemistry and Molecular Biology, 1996, 30: 9-17.
[16]  Petrovska N, Wu X L, Donato R, et al. Transgenic ryegrasses (Lolium spp.) with down-regulation of main pollen allergens[J]. Molecular Breeding, 2004, 14: 489-501.
[17]  Tellam R L, Wijffels G, Willadsen P. Peritrophic matrix proteins[J]. Insect Biochemistry and Molecular Biology, 1999, 29: 87-101.
[18]  Li Q, Robson P R H, Bettany A J E, et al. Modification of senescence in ryegrass transformed with IPT under the control of a monocot senescence-enhanced promoter[J]. Plant Cell Reports, 2004, 22: 816-821.
[19]  Wang P, Granados R R. Molecular structure of the peritrophic membrane (PM): Identification of potential PM target sites for insect control[J]. Archives of Insect Biochemistry and Physiology, 2001, 47: 110-118.
[20]  Ye X, Wang Z Y, Wu X, et al. Transgenic Italian ryegrass (Lolium multiflorum) plants from microprojectile bombardment of embryogenic suspension cells[J]. Plant Cell Reports, 1997, 16: 379-384.
[21]  Shen Z C, Jacobs-Lorena M. A type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin[J]. The Journal of Biological Chemistry, 1998, 273(28): 17665-17670.
[22]  Sarauer B L, Gillott C, Hegedus D. Characterization of an intestinal mucin from the peritrophic matrix of the diamondback moth, Plutella xylostella[J]. Insect Molecular Biology, 2003, 12(4): 333-343.
[23]  Cho H J, Brotherton J E, Widholm J M. Use of the tobacco feedback-insensitive anthranilate synthase gene (ASA2) as a selectable marker for legume hairy root transformation[J]. Plant Cell Reports, 2004, 23: 104-113.
[24]  Tellam R L, Vuocolo T, Eisemann C. Identification of an immuno-protective mucin-like protein, peritrophin-55, from the peritrophic matrix of Lucilia cuprina larvae[J]. Insect Biochemistry and Molecular Biology, 2003, 33: 239-252.
[25]  Nikolic′ R, Mitic′ N, Ninkovic′ S, et al. Efficient genetic transformation of Lotus corniculatus L. and growth of transformed plants in field[J]. Biologia Plantarum, 2003, 47(1): 137-140.
[26]  Wang P, Li G X, Granados R R. Identification of two new peritrophic membrane proteins from larval Trichoplusia ni: Structural characteristics and their functions in the protease rich insect gut[J]. Insect Biochemistry and Molecular Biology, 2004, 34: 215-227.
[27]  Smith R L, Grando M F, Li Y Y, et al. Transformation of bahiagrass (Paspalum notatum Flugge)[J]. Plant Cell Reports, 2002, 20: 1017-1021.
[28]  Guo W, Li G X, Pang Y, et al. A novel chitin binding protein identified from the peritrophic membrane of the cabbage looper, Trichoplusia ni[J]. Insect Biochemistry and Molecular Biology, 2005, 35: 1224-1234.
[29]  周洪旭, 谭秀梅, 李长友, 等. 华北大黑鳃金龟两种围食膜蛋白cDNA的分子克隆与序列分析[J]. 昆虫学报, 2009, 52(1): 10-16.
[30]  郭慧芳, 方继朝, 韩召军. 昆虫病毒增效剂研究进展[J]. 昆虫学报, 2003, 46(6): 766-772.
[31]  王丽娟, 金治平, 王能飞, 等. 羊草叶片cDNA文库的构建及部分表达序列标签的分析[J]. 草业学报, 2009, 18(1): 65-71.
[32]  Richards H A, Rudas V A, Sun H, et al. Construction of a GFP-BAR plasmid and its use for switchgrass transformation[J]. Plant Cell Reports, 2001, 20: 48-54.
[33]  Shi X Z, Chamankhah M, Visal-Shah S, et al. Modeling the structure of the Type I peritrophic matrix: Characterization of a Mamestra configurata intestinal mucin and a novel peritrophin containing 19 chitin binding domains[J]. Insect Biochemistry and Molecular Biology, 2004, 34: 1101-1115.
[34]  Bajaj S, Ran Y, Phillips J, et al. A high throughput Agrobacterium tumefaciens-mediated transformation method for functional genomics of perennial ryegrass (Lolium perenne L.)[J]. Plant Cell Reports, 2006, 25: 651-659.
[35]  Wang P, Granados R R. Molecular cloning and sequencing of a novel invertebrate intestinal mucin cDNA[J]. The Journal of Biological Chemistry, 1997, 272(26): 16663-16669.
[36]  Wu Y Y, Chen Q J, Chen M, et al. Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+antiporter gene[J]. Plant Science, 2005, 169: 65-73.
[37]  Shen Z C, Jacobs-Lorena M. Evolution of chitin-binding proteins in invertebrates[J]. Journal of Molecular Evolution, 1999, 48: 341-347.
[38]  Chen X, Yang W Q, Sivamani E, et al. Selective elimination of perennial ryegrass by activation of a pro-herbicide through engineering E. coli arg E gene[J]. Molecular Breeding, 2005, 15: 339-347.
[39]  Elvin C, Vuocolo T, Pearson R, et al. Characterization of a major peritrophic membrane protein, peritrophin-44, from the larvae of Lucilia cuprina: cDNA and deduced amino acid sequences[J]. Journal of Biological Chemistry, 1996, 271: 8925-8935.
[40]  Altpeter F, Xu J P, Ahmed S. Generation of large numbers of independently transformed fertile perennial ryegrass (Lolium perenne L.) plants of forage-and turf-type cultivars[J]. Molecular Breeding, 2000, 6: 519-528.
[41]  Schorderet S, Pearson R D, Vuocolo T, et al. cDNA and deduced amino acid sequences of a peritrophic membrane glycoprotein, ‘peritrophin- 48’, from the larvae of Lucilia cuprina[J]. Insect Biochemistry and Molecular Biology, 1998, 28: 99-111.
[42]  Maas H M, Jong E R, Rueb S, et al. Stable transformation and long-term expression of the gusA reporter gene in callus lines of perennial ryegrass (Lolium perenne L.)[J]. Plant Molecular Biology, 1994, 24: 401-405.
[43]  何勇, 田志宏. 草坪植物遗传转化的研究进展[J]. 生物技术通讯, 2003, 14: 539-542.
[44]  Eisemann C H, Wijffels G, Tellam R L. Secretion of the type 2 peritrophic matrix protein, peritrophin-15, from the cardia[J]. Archives of Insect Biochemistry and Physiology, 2001, 47: 76-85.
[45]  Chen L F O, Hwang J Y, Charng Y Y, et al. Transformation of broccoli (Brassica oleracea var. italica) with isopentenyltransferase gene via Agrobacterium tumefaciens for post-harvest yellowing retardation[J]. Molecular Breeding, 2001, 7: 243-257.
[46]  Wijffels G, Eisemann C. A novel family of chitin binding proteins from insect type 2 peritrophic matrix[J]. The Journal of Biological Chemistry, 2001, 276(18): 15527-15536.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133