Toyama K, Bae C H, Kang J G, et al. Production of herbicide-tolerant zoysia grass by Agrobacterium-mediated transformation[J]. Molecular Cells, 2003, 16(1): 19-27.
[9]
Tellam R L, Eisemann C. Chitin is only a minor component of the peritrophic matrix from larvae of Lucilia cuprina[J]. Insect Biochemistry and Molecular Biology, 2000, 30: 1189-1201.
[10]
Shu Q Y, Liu G S, Xu S X, et al. Genetic transformation of Leymus chinensis with the PAT gene through microprojectile bombardment to improve resistance to the herbicide Basta[J]. Plant Cell Reports, 2005, 24: 36-44.
[11]
Bolognesi R, Ribeiro A F, Terra W R. The peritrophic membrane of Spodoptera frugiperda: Secretion of peritrophins and role in immobilization and recycling digestive enzymes[J]. Archives of Insect Biochemistry and Physiology, 2001, 47(2): 62-75.
[12]
Wang Z Y, Bell J, Lehmann D. Transgenic Russian wildrye (Psathyrostachys juncea) plants obtained by biolistic transformation of embryogenic suspension cells[J]. Plant Cell Reports, 2004, 22: 903-909.
[13]
Lehane M J. Peritrophic matrix structure and function[J]. Annual Review of Entomology, 1997, 42: 525-550.
[14]
Takahashi W, Fujimori M, Miura Y, et al. Increased resistance to crown rust disease in transgenic Italian ryegrass (Lolium multiflorum Lam.) expressing the rice chitinase gene[J]. Plant Cell Reports, 2005, 23: 811-818.
[15]
Tellam R L, Eisemann C, Casu R, et al. The intrinsic peritrophic matrix protein peritrophin-95 from larvae of Lucilia cuprina is synthesized in the cardia and regurgitated or excreted as a highly immunogenic protein[J]. Insect Biochemistry and Molecular Biology, 1996, 30: 9-17.
[16]
Petrovska N, Wu X L, Donato R, et al. Transgenic ryegrasses (Lolium spp.) with down-regulation of main pollen allergens[J]. Molecular Breeding, 2004, 14: 489-501.
[17]
Tellam R L, Wijffels G, Willadsen P. Peritrophic matrix proteins[J]. Insect Biochemistry and Molecular Biology, 1999, 29: 87-101.
[18]
Li Q, Robson P R H, Bettany A J E, et al. Modification of senescence in ryegrass transformed with IPT under the control of a monocot senescence-enhanced promoter[J]. Plant Cell Reports, 2004, 22: 816-821.
[19]
Wang P, Granados R R. Molecular structure of the peritrophic membrane (PM): Identification of potential PM target sites for insect control[J]. Archives of Insect Biochemistry and Physiology, 2001, 47: 110-118.
[20]
Ye X, Wang Z Y, Wu X, et al. Transgenic Italian ryegrass (Lolium multiflorum) plants from microprojectile bombardment of embryogenic suspension cells[J]. Plant Cell Reports, 1997, 16: 379-384.
[21]
Shen Z C, Jacobs-Lorena M. A type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin[J]. The Journal of Biological Chemistry, 1998, 273(28): 17665-17670.
[22]
Sarauer B L, Gillott C, Hegedus D. Characterization of an intestinal mucin from the peritrophic matrix of the diamondback moth, Plutella xylostella[J]. Insect Molecular Biology, 2003, 12(4): 333-343.
[23]
Cho H J, Brotherton J E, Widholm J M. Use of the tobacco feedback-insensitive anthranilate synthase gene (ASA2) as a selectable marker for legume hairy root transformation[J]. Plant Cell Reports, 2004, 23: 104-113.
[24]
Tellam R L, Vuocolo T, Eisemann C. Identification of an immuno-protective mucin-like protein, peritrophin-55, from the peritrophic matrix of Lucilia cuprina larvae[J]. Insect Biochemistry and Molecular Biology, 2003, 33: 239-252.
[25]
Nikolic′ R, Mitic′ N, Ninkovic′ S, et al. Efficient genetic transformation of Lotus corniculatus L. and growth of transformed plants in field[J]. Biologia Plantarum, 2003, 47(1): 137-140.
[26]
Wang P, Li G X, Granados R R. Identification of two new peritrophic membrane proteins from larval Trichoplusia ni: Structural characteristics and their functions in the protease rich insect gut[J]. Insect Biochemistry and Molecular Biology, 2004, 34: 215-227.
[27]
Smith R L, Grando M F, Li Y Y, et al. Transformation of bahiagrass (Paspalum notatum Flugge)[J]. Plant Cell Reports, 2002, 20: 1017-1021.
[28]
Guo W, Li G X, Pang Y, et al. A novel chitin binding protein identified from the peritrophic membrane of the cabbage looper, Trichoplusia ni[J]. Insect Biochemistry and Molecular Biology, 2005, 35: 1224-1234.
Richards H A, Rudas V A, Sun H, et al. Construction of a GFP-BAR plasmid and its use for switchgrass transformation[J]. Plant Cell Reports, 2001, 20: 48-54.
[33]
Shi X Z, Chamankhah M, Visal-Shah S, et al. Modeling the structure of the Type I peritrophic matrix: Characterization of a Mamestra configurata intestinal mucin and a novel peritrophin containing 19 chitin binding domains[J]. Insect Biochemistry and Molecular Biology, 2004, 34: 1101-1115.
[34]
Bajaj S, Ran Y, Phillips J, et al. A high throughput Agrobacterium tumefaciens-mediated transformation method for functional genomics of perennial ryegrass (Lolium perenne L.)[J]. Plant Cell Reports, 2006, 25: 651-659.
[35]
Wang P, Granados R R. Molecular cloning and sequencing of a novel invertebrate intestinal mucin cDNA[J]. The Journal of Biological Chemistry, 1997, 272(26): 16663-16669.
[36]
Wu Y Y, Chen Q J, Chen M, et al. Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+antiporter gene[J]. Plant Science, 2005, 169: 65-73.
[37]
Shen Z C, Jacobs-Lorena M. Evolution of chitin-binding proteins in invertebrates[J]. Journal of Molecular Evolution, 1999, 48: 341-347.
[38]
Chen X, Yang W Q, Sivamani E, et al. Selective elimination of perennial ryegrass by activation of a pro-herbicide through engineering E. coli arg E gene[J]. Molecular Breeding, 2005, 15: 339-347.
[39]
Elvin C, Vuocolo T, Pearson R, et al. Characterization of a major peritrophic membrane protein, peritrophin-44, from the larvae of Lucilia cuprina: cDNA and deduced amino acid sequences[J]. Journal of Biological Chemistry, 1996, 271: 8925-8935.
[40]
Altpeter F, Xu J P, Ahmed S. Generation of large numbers of independently transformed fertile perennial ryegrass (Lolium perenne L.) plants of forage-and turf-type cultivars[J]. Molecular Breeding, 2000, 6: 519-528.
[41]
Schorderet S, Pearson R D, Vuocolo T, et al. cDNA and deduced amino acid sequences of a peritrophic membrane glycoprotein, ‘peritrophin- 48’, from the larvae of Lucilia cuprina[J]. Insect Biochemistry and Molecular Biology, 1998, 28: 99-111.
[42]
Maas H M, Jong E R, Rueb S, et al. Stable transformation and long-term expression of the gusA reporter gene in callus lines of perennial ryegrass (Lolium perenne L.)[J]. Plant Molecular Biology, 1994, 24: 401-405.
Eisemann C H, Wijffels G, Tellam R L. Secretion of the type 2 peritrophic matrix protein, peritrophin-15, from the cardia[J]. Archives of Insect Biochemistry and Physiology, 2001, 47: 76-85.
[45]
Chen L F O, Hwang J Y, Charng Y Y, et al. Transformation of broccoli (Brassica oleracea var. italica) with isopentenyltransferase gene via Agrobacterium tumefaciens for post-harvest yellowing retardation[J]. Molecular Breeding, 2001, 7: 243-257.
[46]
Wijffels G, Eisemann C. A novel family of chitin binding proteins from insect type 2 peritrophic matrix[J]. The Journal of Biological Chemistry, 2001, 276(18): 15527-15536.