全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2010 

高寒草甸群落地表植被特征与土壤理化性状、土壤微生物之间的相关性研究

, PP. 25-34

Keywords: 高寒草甸,物种多样性,土壤微生物,土壤酶活性,生物量

Full-Text   Cite this paper   Add to My Lib

Abstract:

以青藏高原高寒草甸4种主要草地类型为研究对象,分析了不同植被类型土壤的理化性质、土壤微生物数量、土壤酶活性与生态系统功能间的相互关系。结果表明,不同植被类型群落的土壤特性存在明显差异。藏嵩草沼泽化草甸0~40cm土层土壤容重、土壤含水量、土壤有机质、土壤全氮和土壤速效氮含量明显不同于矮嵩草草甸、小嵩草草甸和金露梅灌丛草甸,土壤物理特性的改变(土壤养分、土壤容重、土壤湿度等)会引起植被组成、物种多样性变化;细菌数量和真菌数量与植物群落地上生物量之间存在显著正相关关系(P<0.05)、放线菌数量与生物量之间的相关性不显著,不同植被类型的群落生物量影响着土壤微生物数量和组成;不同草地类型植物群落地上生物量与土壤酶活性(磷酸酶、过氧化氢酶、蛋白酶、脲酶等)之间存在显著的正相关关系(P<0.05),土壤酶活性对土壤有机质、腐殖质等的合成起到了积极作用。土壤酶活性的高低不仅影响了群落生物量,同时也影响群落物种多样性(物种丰富度),土壤酶活性的高低通过影响土壤微生物种类和数量、土壤养分含量,从而间接影响群落物种多样性。

References

[1]  Abogadallah G M, Quick W P. Fast versatile regeneration of Trifolium alexandrinum L.[J]. Plant Cell Tissue and Organ Culture, 2010, 100: 39-48.
[2]  Rosenzweig M L. Species Diversity in Space and Time[M]. Cambridge, UK: Cambridge University Press, 1995.
[3]  Li J J, Wu Y M, Wang T, et al. In vitro direct organogenesis and regeneration of Medicago sativa[J]. Biologia Plantarum, 2009, 53(2): 325-328.
[4]  Tilman D. Secondary succession and the pattern of plant dominance along experimental nitrogen gradients[J]. Ecological Monographs, 1987, 57: 189-214.
[5]  曲国辉, 郭继勋. 松嫩平原不同演替阶段植物群落和土壤特性的关系[J]. 草业学报, 2003, 12(1): 18-22.
[6]  卢其明, 林琳, 庄雪影, 等. 车八岭不同演替阶段植物群落土壤特征的初步研究[J]. 华南农业大学学报, 1997, 18(3): 48-52.
[7]  张庆费, 宋永昌, 由文辉. 浙江天童植物群落次生演替与土壤肥力的关系[J]. 生态学报, 1999, 19(2): 174-178.
[8]  Nagarajan P, McKenzie J S, Walton P D. Embryogenesis and plant regeneration of Medicago spp. in tissue culture[J]. Plant Cell Reports, 1986, 5: 77-80.
[9]  Kellner O, Redbo-Torstensson P R. Effects of elevated nitrogen deposition on field layer vegetation on coniferous forests[J]. Ecological Bulletins, 1995, 44: 227-237.
[10]  王长庭, 龙瑞军, 王启兰, 等. 三江源区不同建植年代人工草地群落演替与土壤养分变化[J]. 应用与环境生物学报, 2009, 15(6): 737-744.
[11]  王启兰, 曹广民, 王长庭. 放牧对小嵩草草甸土壤酶活性及土壤环境因素的影响[J]. 植物营养与肥料学报, 2007, 13(5): 856-864.
[12]  李香真, 曲秋皓. 蒙古高原草原土壤微生物量碳氮特征[J]. 土壤学报, 2002, 39: 97-104.
[13]  孙睿, 刘昌明, 朱启疆. 黄河流域植被覆盖度动态变化与降水的关系[J]. 地理学报, 2001, 56: 667-672.
[14]  王长庭, 王启兰, 景增春, 等. 不同放牧梯度下高寒小嵩草草甸植被根系和土壤理化特征的变化[J]. 草业学报, 2008, 17(5): 9-15. 浏览
[15]  王启兰, 王长庭, 杜岩功, 等. 放牧对高寒嵩草草甸土壤微生物量碳的影响及其与土壤环境的关系[J]. 草业学报, 2008, 17(2): 39-46.
[16]  Zak D R, Holmes W E, White D C, et al. Plant diversity, soil microbial communities, and ecosystem function: Are there any links[J]. Ecology, 2003, 84: 2042-2050.
[17]  关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1983: 182-266.
[18]  吴彦, 刘庆, 乔永康, 等. 亚高山针叶林不同恢复阶段群落物种多样性变化及其对土壤理化性质的影响[J]. 植物生态学报, 2001, 25: 648-655.
[19]  Burris J N, Mann D G J, Joyce B L, et al. An improved tissue culture system for embryogenic callus production and plant regeneration in switchgrass (Panicum virgatum L.)[J]. Bioenerg Research, 2009, 2: 267-274.
[20]  Li X L, Yu X M, Wang N N, et al. Genetic and epigenetic instabilities induced by tissue culture in wild barley (Hordeum brevisubulatum (Trin.) Link)[J]. Plant Cell Tissue and Organ Culture, 2007, 90: 153-168.
[21]  Harris J A. Measurements of the soil microbial community for estimating the success of restoration[J]. European Journal of Soil Science, 2003, 54: 801-808.
[22]  Liu G S, Liu J S, Qi D M, et al. Factors affecting plant regeneration from tissue cultures of Chinese leymus (Leymus chinensis)[J]. Plant Cell Tissue and Organ Culture, 2004, 76: 175-178.
[23]  Deacon L J, Millera E J P, Frankland J C, et al. Diversity and function of decomposer fungi from a grassland soil[J]. Soil Biology & Biochemistry, 2006, 38: 7-20.
[24]  Akashi R, Kawano T, Hashiguchi M, et al. Super roots in Lotus corniculatus: A unique tissue culture and regeneration system in a legume species[J]. Plant and Soil, 2003, 255: 27-33.
[25]  Giai C, Boerner R E J. Effects of ecological restoration on microbial activity, microbial functional diversity, and soil organic matter in mixed-oak forests of southern Ohio, USA[J]. Applied Soil Ecology, 2007, 35: 281-290.
[26]  王长庭, 龙瑞军, 曹广民, 等. 三江源地区主要草地类型土壤碳氮沿海拔变化特征及其影响因素[J]. 植物生态学报, 2006, 30: 441-449.
[27]  鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
[28]  Molinari L, Busti A, Calderini O, et al. Plant regeneration from callus of apomictic and sexual lines of Paspalum simplex and RFLP analysis of regenerated plants[J]. Plant Cell Reports, 2003, 21: 1040-1046.
[29]  Vance E D, Brooks P C, Jenkinson D S. An extraction method for measure soil microbial biomass C[J]. Soil Biology & Biochemistry, 1987, 19: 703-707.
[30]  中国科学院南京土壤研究所微生物室. 土壤微生物研究法[M]. 北京: 科学出版社, 1985.
[31]  Smith J L, Paul E A. The significance of soil microbial biomass estimations[A]. In: Bollag J, Stotsky G. Soil Biochemistry[M]. New York, USA: Maecel Dekker, 1990: 357-396.
[32]  Zwierzykowski Z, Zwierzykowska E, Slusarkiewicz-Jarzina A, et al. Regeneration of anther-derived plants from pentaploid hybrids of Festuca arundinacea×Lolium multifiorum[J]. Euphytica, 1999, 105: 191-195.
[33]  Zak D R, Grigal D F, Gleeson S, et al. Carbon and nitrogen cycling during secondary succession: Constraints on plant and microbial biomass[J]. Biogeichemistry, 1990, 11: 111-129.
[34]  McLean N L, Nowak J. Inheritance of somatic embryogenesis in red clover (Trifolium pratense L.)[J]. Theoretical and Applied Genetics, 1998, 97: 557-562.
[35]  Tabatabai T, Dick W A. Enzymes in soil[A]. In: Burns R G, Dick R P. Enzymes in the Environment[M]. New York, USA: Marcel Dekker, 2002: 567-596.
[36]  胡斌, 段昌群, 王震洪, 等. 植被恢复措施对退化生态系统土壤酶活性及肥力的影响[J]. 土壤学报, 2002, 39: 604-608.
[37]  曹慧, 孙辉, 杨浩, 等. 土壤酶活性及其对土壤质量的指示研究进展[J]. 应用与环境生物学报, 2003, 9: 105-109.
[38]  王友保, 张莉, 刘登义. 灰渣场土壤酶活性与植被和土壤化学性质的关系[J]. 应用生态学报, 2003, 14: 110-112.
[39]  邱莉萍, 刘军, 王益权, 等. 土壤酶活性和土壤肥力关系的研究[J]. 植物营养与肥料学报, 2004, 10: 277-280.
[40]  张焱华, 吴敏, 何鹏, 等. 土壤酶活性与土壤肥力关系的研究进展[J]. 安徽农业科学, 2007, 35(34): 11139-11142.
[41]  MacLean N L, Nowak J. Plant regeneration from hypocotyl and petiole callus of Trifolium pratense L.[J]. Plant Cell Reports, 1989, 8: 395-398.
[42]  焦婷, 常根柱, 周学辉, 等. 高寒草甸草场不同载畜量下土壤酶与土壤肥力的关系研究[J]. 草业学报, 2009, 18(6): 98-104. 浏览
[43]  侯彦会, 周学辉, 焦婷, 等. 甘肃永昌县放牧草地土壤脲酶活性与土壤肥力的关系初探[J]. 草业学报, 2009, 18(4): 111-116. 浏览
[44]  马克平, 刘玉明. 生物群落多样性的测度方法I. α多样性的测度方法(下)[J].生物多样性, 1994, 2: 231-239.
[45]  Wang Z, Lehmann D, Bell J, et al. Development of an efficient plant regeneration system for Russian wildrye (Psathyrostachys juncea)[J]. Plant Cell Reports, 2002, 20: 797-801.
[46]  鲁如坤, 时正元. 退化红壤肥力障碍特征及重建措施Ⅲ. 典型地区红壤磷素积累及其环境意义[J]. 土壤, 2000, 6: 310-314.
[47]  Vikrant, Rashid A. Somatic embryogenesis from immature and mature embryos of a minormillet Paspalum scrobiculatum L.[J]. Plant Cell Tissue and Organ Culture, 2002, 69: 71-77.
[48]  Pickett S T A, Kolasa J, Armesto J. The ecological community: A comment on the role of empiricism in ecology[J]. Oikos, 2002, 54: 515-525.
[49]  Nayak P, Sen S K. Plant regeneration through somatic embryogenesis from suspension culture-derived protoplasts of Paspalum scrobiculatum L.[J]. Plant Cell Reports, 1991, 10: 362-365.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133