全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2010 

基于MODIS影像的藏北高寒草甸的蒸散模拟

, PP. 103-112

Keywords: 蒸散,水分利用效率,植被光合模型,藏北高原,高寒草甸

Full-Text   Cite this paper   Add to My Lib

Abstract:

在高寒草甸生态系统中,蒸散(evapotranspiration,ET)是水循环中一个非常重要的组成部分。为了更好的模拟蒸散,本研究计算了生态系统尺度的水分利用效率(WUEEC)。相关分析和多重逐步线性回归分析结果表明,影响WUEEC的主要因子为归一化植被指数(NDVI)、空气相对湿度(Ha)和显热通量(H)。在此基础上,分别建立了WUEEC与NDVI、Ha和H的线性回归方程(其中,H的模拟值WUEH和WUEEC差异显著),利用建立的WUEEC的回归方程和植被光合模型(VPM)估计的总初级生产力(GPPVPM)模拟了生态系统尺度的蒸散。模拟的蒸散(NDVI的模拟值ETNDVI,Ha的模拟值ETHa)和通量观测的蒸散(ETEC)的简单线性方程分别为ETNDVI=1.2985ETEC(R2=0.8029,n=46,P<0.0001)和ETHa=1.3118ETEC(R2=0.7487,n=46,P<0.0001),这表明ETNDVI和ETHa都能够比较准确地反应ETEC,但仍然存在较大的差异,本研究采用多重逐步线性回归的方法定量分析了造成该差异的原因:ETEC和ETNDVI的差异(ETEC-ETNDVI)主要受光合有效辐射(PAR)和GPPVPM的影响;而ETEC和ETHa的差异(ETEC-ETHa)主要受PAR、GPPVPM和增强型植被指数(EVI)的影响。

References

[1]  Alfieri J G, Xiao X M, Niyogi D, et al. Satellite-based modeling of transpiration from the grasslands in the Southern Great Plains, USA[J]. Global and Planetary Change, 2009, 67: 78-86.
[2]  Nachabe M, Shah N, Ross M, et al. Evapotranspiration of two vegetation covers in a shallow water table environment[J]. Soil Science Society of America Journal, 2005, 69(2): 492-499.
[3]  Zhang J H, Hu Y L, Xiao X M, et al. Satellite-based estimation of evapotranspiration of an old-growth temperate mixed forest[J]. Agricultural and Forest Meteorology, 2009, 149: 976-984.
[4]  Verstraeten W W, Veroustraete F, Feyen J. Estimating evapotranspiration of European forest from NOAA-imagery at satellite overpass time: Towards an operational processing chain for integrated optical and thermal sensor data products[J]. Remote Sensing of Environment, 2005, 96(2): 256-276.
[5]  Venturim V, Islam S, Rodriguez L. Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model[J]. Remote Sensing of Environment, 2008, 112: 132-141.
[6]  Suleiman A, Crago R. Hourly and daytime evapotranspiration from grassland using radiometric surface temperatures[J]. Agronomy Journal, 2004, 96: 384-390.
[7]  Cleugh H A, Leuning R, Mu Q Z, et al. Regional evaporation estimates from flux tower and MODIS satellite data[J]. Remote Sensing of Environment, 2007, 106: 285-304.
[8]  Holifield C D, McElroy S, Moran M S, et al. Temporal and spatial changes in grassland transpiration detected using Landsat TM and ETM+ imagery[J]. Canadian Journal of Remote Sensing, 2003, 29: 259-270.
[9]  Nishida K, Nemani R R, Running S W, et al. An operational remote sensing algorithm of land surface evaporation[J]. Journal of Geophysical Research, 2003, 108: 1-14.
[10]  Kustas W P, Norman J M. Use of remote sensing for evapotranspiration monitoring over land surfaces[J]. Hydrological Sciences, 1996, 41(4): 495-516.
[11]  Batra N, Islam S, Venturini V, et al. Estimation and comparison of evapotranspiration from MODIS and AVHRR sensors for clear sky days over the Southern Great Plains[J]. Remote Sensing of Environment, 2006, 103: 1-15.
[12]  Venturini V, Bisht G, Islam S, et al. Comparison of evaporative fractions estimated from AVHRR and MODIS sensors over South Florida[J]. Remote Sensing of Environment, 2004, 93: 77-86.
[13]  da Silva V D R, de Azevedo P V, da Silva B B. Surface energy fluxes and evapotranspiration of a Mango Orchard grown in a semiarid environment[J]. Agronomy Journal, 2007, 99: 1391-1396.
[14]  Granger R J, Gray D M. Evaporation from natural nonsaturated surfaces[J]. Journal of Hydrology, 1989, 111: 21-29.
[15]  Tolk J A, Howell T A, Evett S R. Nighttime evapotranspiration from Alfalfa and Cotton in a semiarid climate[J]. Agronomy Journal, 2006, 98: 730-736.
[16]  Lascano R J, van Bavel C H M. Explicit and recursive calculation of potential and actual evapotranspiration[J]. Agronomy Journal, 2007, 99: 585-590.
[17]  Xiao X M, Zhang Q Y, Braswell B, et al. Modeling gross primary production of temperature deciduous broadleaf forest using satellite images and climate data[J]. Remote Sensing of Environment, 2004, 91: 256-270.
[18]  李荣生, 许煌灿, 尹光天, 等. 植物水分利用效率的研究进展[J]. 林业科学研究, 2003, 16(3): 366-371.
[19]  张岁岐, 山仑. 植物水分利用效率及其研究进展[J]. 干旱地区农业研究, 2002, 20(4): 1-5.
[20]  黄立华, 梁正伟, 马红媛. 苏打盐碱胁迫对羊草光合、蒸腾速率及水分利用效率的影响[J]. 草业学报, 2009, 18(5): 25-30.
[21]  刘国利, 何树斌, 杨惠敏. 紫花苜蓿水分利用效率对水分胁迫的响应及其机理[J]. 草业学报, 2009, 18(3): 207-213.
[22]  孙洪仁, 张英俊, 历卫宏, 等. 北京地区紫花苜蓿建植当年的耗水系数和水分利用效率[J]. 草业学报, 2007, 16(1): 41-46.
[23]  郑有飞, 万长建, 颜景义, 等. 小麦的水分利用效率及其最优化问题[J]. 中国农业气象, 1997, 18(4): 13-17.
[24]  杨秀芳, 玉柱, 徐妙云, 等. 2种不同类型的尖叶胡枝子光合-光响应特性研究[J]. 草业科学, 2009, 26(7): 61-65.
[25]  Hatfield J L, Sauer T J, Prueger J H. Managing soils to achieve greater water use efficiency: A Review[J]. Agronomy Journal, 2001, 93: 271-280.
[26]  邵新庆, 沈禹颖, 王堃. 水土保持耕作对夏种大豆光合、蒸腾及水分利用效率的影响[J]. 草业学报, 2005, 14(6): 82-86.
[27]  Nagler P L, Glenn E P, Kim H, et al. Relationship between evapotranspiration and precipitation pulses in a semiarid rangeland estimated by moisture flux towers and MODIS vegetation indices[J]. Journal of Arid Environment, 2007, 70(3): 443-462.
[28]  徐玲玲, 张宪洲, 石培礼, 等. 青藏高原高寒草甸生态系统表观量子产额和表观最大光合速率的确定[J]. 中国科学, 2004, 34(增刊Ⅱ):125-130.
[29]  Justice C O, Vermote E, Townshend J R G, et al. The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research[J]. IEEE Transactions on Geo-science and Remote Sensing, 1998, 36: 1228-1249.
[30]  Xiao X M, Braswell B, Zhang Q Y, et al. Sensitivity of vegetation indices to atmospheric aerosols: Continental-scale observations in Northern Asia[J]. Remote Sensing of Environment, 2003, 84: 385-392.
[31]  Huete A, Didan K, Miura T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment, 2002, 83: 195-213.
[32]  Xiao X M, Zhang Q Y, Hollinger D, et al. Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data[J]. Ecological Applications, 2005, 15: 954-969.
[33]  Xiao X M, Zhang Q Y, Saleska S, et al. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest[J]. Remote Sensing of Environment, 2005, 94: 105-122.
[34]  Xiao X M, Hollinger D, Aber J D, et al. Satellite-based modeling of gross primary production in an evergreen needle leaf forest[J]. Remote Sensing of Environment, 2004, 89: 519-534.
[35]  Oweis T, Zhang H P, Pala M. Water use efficiency of rainfed and irrigated bread wheat in a Mediterranean Environment[J]. Agronomy Journal, 2000, 92: 231-238.
[36]  渠春梅, 韩兴国, 苏波, 等. 云南西双版纳片断化热带雨林植物叶片δ13C值的特点及其对水分利用效率的指示[J]. 植物学报, 2001, 43(2): 186-192.
[37]  Farquhar G D, O’Leary M H, Berry J A. On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves[J]. Australian Journal of Plant Physiology, 1982, 9: 121-137.
[38]  王月福, 于振文, 潘庆民. 土壤水分胁迫对耐旱性不同的小麦品种水分利用效率的影响[J]. 山东农业科学, 1998, (3): 5-7.
[39]  蒋高明, 何维明. 毛乌素沙地若干植物光合作用、蒸腾作用和水分利用效率种间及生境差异[J]. 植物学报, 1999, 41(10): 1114-1124.
[40]  Nobel P S. Achievable productivities of certain CAM plants: Basis for high values compared with C3 and C4 plants[J]. New Phytologist, 1991, 119: 183-205.
[41]  Allen L H, Pan D Y, Boote K J, et al. Carbon dioxide and temperature effects on evapotranspiration and water use efficiency of soybean[J]. Agronomy Journal, 2003, 95: 1071-1081.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133