Alfieri J G, Xiao X M, Niyogi D, et al. Satellite-based modeling of transpiration from the grasslands in the Southern Great Plains, USA[J]. Global and Planetary Change, 2009, 67: 78-86.
[2]
Nachabe M, Shah N, Ross M, et al. Evapotranspiration of two vegetation covers in a shallow water table environment[J]. Soil Science Society of America Journal, 2005, 69(2): 492-499.
[3]
Zhang J H, Hu Y L, Xiao X M, et al. Satellite-based estimation of evapotranspiration of an old-growth temperate mixed forest[J]. Agricultural and Forest Meteorology, 2009, 149: 976-984.
[4]
Verstraeten W W, Veroustraete F, Feyen J. Estimating evapotranspiration of European forest from NOAA-imagery at satellite overpass time: Towards an operational processing chain for integrated optical and thermal sensor data products[J]. Remote Sensing of Environment, 2005, 96(2): 256-276.
[5]
Venturim V, Islam S, Rodriguez L. Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model[J]. Remote Sensing of Environment, 2008, 112: 132-141.
[6]
Suleiman A, Crago R. Hourly and daytime evapotranspiration from grassland using radiometric surface temperatures[J]. Agronomy Journal, 2004, 96: 384-390.
[7]
Cleugh H A, Leuning R, Mu Q Z, et al. Regional evaporation estimates from flux tower and MODIS satellite data[J]. Remote Sensing of Environment, 2007, 106: 285-304.
[8]
Holifield C D, McElroy S, Moran M S, et al. Temporal and spatial changes in grassland transpiration detected using Landsat TM and ETM+ imagery[J]. Canadian Journal of Remote Sensing, 2003, 29: 259-270.
[9]
Nishida K, Nemani R R, Running S W, et al. An operational remote sensing algorithm of land surface evaporation[J]. Journal of Geophysical Research, 2003, 108: 1-14.
[10]
Kustas W P, Norman J M. Use of remote sensing for evapotranspiration monitoring over land surfaces[J]. Hydrological Sciences, 1996, 41(4): 495-516.
[11]
Batra N, Islam S, Venturini V, et al. Estimation and comparison of evapotranspiration from MODIS and AVHRR sensors for clear sky days over the Southern Great Plains[J]. Remote Sensing of Environment, 2006, 103: 1-15.
[12]
Venturini V, Bisht G, Islam S, et al. Comparison of evaporative fractions estimated from AVHRR and MODIS sensors over South Florida[J]. Remote Sensing of Environment, 2004, 93: 77-86.
[13]
da Silva V D R, de Azevedo P V, da Silva B B. Surface energy fluxes and evapotranspiration of a Mango Orchard grown in a semiarid environment[J]. Agronomy Journal, 2007, 99: 1391-1396.
[14]
Granger R J, Gray D M. Evaporation from natural nonsaturated surfaces[J]. Journal of Hydrology, 1989, 111: 21-29.
[15]
Tolk J A, Howell T A, Evett S R. Nighttime evapotranspiration from Alfalfa and Cotton in a semiarid climate[J]. Agronomy Journal, 2006, 98: 730-736.
[16]
Lascano R J, van Bavel C H M. Explicit and recursive calculation of potential and actual evapotranspiration[J]. Agronomy Journal, 2007, 99: 585-590.
[17]
Xiao X M, Zhang Q Y, Braswell B, et al. Modeling gross primary production of temperature deciduous broadleaf forest using satellite images and climate data[J]. Remote Sensing of Environment, 2004, 91: 256-270.
Nagler P L, Glenn E P, Kim H, et al. Relationship between evapotranspiration and precipitation pulses in a semiarid rangeland estimated by moisture flux towers and MODIS vegetation indices[J]. Journal of Arid Environment, 2007, 70(3): 443-462.
Justice C O, Vermote E, Townshend J R G, et al. The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research[J]. IEEE Transactions on Geo-science and Remote Sensing, 1998, 36: 1228-1249.
[30]
Xiao X M, Braswell B, Zhang Q Y, et al. Sensitivity of vegetation indices to atmospheric aerosols: Continental-scale observations in Northern Asia[J]. Remote Sensing of Environment, 2003, 84: 385-392.
[31]
Huete A, Didan K, Miura T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment, 2002, 83: 195-213.
[32]
Xiao X M, Zhang Q Y, Hollinger D, et al. Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data[J]. Ecological Applications, 2005, 15: 954-969.
[33]
Xiao X M, Zhang Q Y, Saleska S, et al. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest[J]. Remote Sensing of Environment, 2005, 94: 105-122.
[34]
Xiao X M, Hollinger D, Aber J D, et al. Satellite-based modeling of gross primary production in an evergreen needle leaf forest[J]. Remote Sensing of Environment, 2004, 89: 519-534.
[35]
Oweis T, Zhang H P, Pala M. Water use efficiency of rainfed and irrigated bread wheat in a Mediterranean Environment[J]. Agronomy Journal, 2000, 92: 231-238.
Farquhar G D, O’Leary M H, Berry J A. On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves[J]. Australian Journal of Plant Physiology, 1982, 9: 121-137.
Nobel P S. Achievable productivities of certain CAM plants: Basis for high values compared with C3 and C4 plants[J]. New Phytologist, 1991, 119: 183-205.
[41]
Allen L H, Pan D Y, Boote K J, et al. Carbon dioxide and temperature effects on evapotranspiration and water use efficiency of soybean[J]. Agronomy Journal, 2003, 95: 1071-1081.