全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2010 

籽粒苋幼苗对不同盐离子胁迫响应的比较研究

, PP. 63-70

Keywords: 籽粒苋,幼苗,等渗条件,盐胁迫,生长,光合作用,离子平衡

Full-Text   Cite this paper   Add to My Lib

Abstract:

比较研究了等渗(-0.096,-0.198,-0.437MPa)的NaCl、Cl盐和Na盐处理10d对籽粒苋幼苗干重、生长速率、叶绿素含量、光合作用特性及离子吸收分布的影响。结果表明,-0.096和-0.198MPaCl盐显著促进植株干重,-0.198和-0.437MPa盐胁迫下,对籽粒苋幼苗生长抑制幅度由大到小依次为Na盐>NaCl>Cl盐处理。高盐(-0.437MPa)胁迫下,对籽粒苋幼苗净光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs)的抑制幅度由大到小次序为Na盐>NaCl>Cl盐处理。NaCl和Na盐胁迫下,籽粒苋幼苗植株根和茎中Na+含量均高于叶中Na+含量,将Na+更多的截留在根、茎中。不同渗透势下的NaCl、Na盐处理均显著提高根、茎、叶的SK,Na,根的SK,Na随着盐度的增加呈增加趋势。结果表明,NaCl对籽粒苋幼苗的钠胁迫作用显著大于氯胁迫的,NaCl和Na盐胁迫下植株根、茎、叶对K+的选择性吸收和运输均显著增强,赋予籽粒苋幼苗对盐的一定程度上的适应性。

References

[1]  杨帆, 丁菲, 杜天真. 盐胁迫下构树幼苗各器官中K+、Ca2+、Na+和Cl- 含量分布及吸收特征[J]. 应用生态学报, 2009, 20(4):767-772.
[2]  Ruizd M C. Demarcating specification (NaCl,Cl-,Na+) and osmotic effects in the response of two citrus rootstock to salinity[J]. Scientia Horticulturae, 1999, 80: 213-224.
[3]  Zheng Q S, Liu L, Liu Z P, et al. Comparison of the response of ion distribution in the tissues and cells of the succulent plants Aloe vera and salicornia europaea to saine stress[J]. Journal of Plant Nutrition and Soil Science, 2009, 172(6):875-883.
[4]  刘友良, 汪良驹. 植物对盐胁迫的反应和耐盐性[A]. 余叔文, 汤章城. 植物生理和分子生物学[C]. 北京:科学出版社, 1998: 752-769.
[5]  Moya J L, Gómez-Cadenas A, Primo-Millo E, et al. Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use[J]. Journal of Experimental Botany, 2003, 54: 825-833.
[6]  Luo Q Y, Yu B J, Liu Y L. Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress[J]. Journal of Plant Physiology, 2005, 162: 1003-1012.
[7]  张宏飞, 王锁民. 高等植物Na+吸收、转运及细胞内Na+稳态平衡研究进展[J]. 植物学通报, 2007, 24 (5): 561-571.
[8]  周玲玲, 缪建锟, 祝建波, 等. 大叶补血草Na+/H+逆向转运蛋白基因的克隆及序列分析[J]. 草业学报, 2009, 18(5): 176-183. 浏览
[9]  Zhao F, Song C P, He J Q, et al. Polyamines improve K+/Na+homeostasis in barley seedlings by regulating root ion channel activities [J]. Plant Physiology, 2007, 145: 1061-1072.
[10]  高永生, 王锁民, 宫海军, 等. 盐胁迫下植物离子转运的分子生物学研究[J]. 草业学报, 2003, 12(5): 18-25.
[11]  郑青松, 杨文杰, 刘兆普, 等. 外源氯处理对向日葵幼苗生长、养分吸收及植株硝态氮含量的影响[J]. 植物营养与肥料学报, 2007, 13(6): 1161-1165.
[12]  Parida A K, Das A B. Salt tolerance and salinity effects on plants: A review[J]. Ecotoxicology and Environmental Safety, 2005, 60(3): 324-349.
[13]  Moghaieb R E A, Saneoka H, Fujita K. Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritime[J]. Plant Science, 2004, 166: 1345-1349.
[14]  赵昕, 赵敏桂, 谭会娟, 等. NaCl胁迫对盐芥和拟南芥K+、Na+吸收的影响[J]. 草业学报, 2007, 16(4): 21-24.
[15]  张永锋, 梁正伟, 隋丽, 等. 盐碱胁迫对苗期紫花苜蓿生理特性的影响[J]. 草业学报, 2009, 18(4): 230-235. 浏览
[16]  贾文庆, 刘会超. NaCl胁迫对白三叶一些生理特性的影响[J]. 草业科学, 2009, 26(8): 187-189.
[17]  Romero-Aranda R, Soria T, Cuartero J. Tomato plant-water uptake and plant-water relationships under saline growth conditions[J]. Plant Science, 2001, 160: 265-272.
[18]  张锡洲, 李廷杆, 王昌全. 富钾植物籽粒苋研究进展[J]. 中国农学通报, 2005, 21(4): 230-235.
[19]  Pospisil A, Pospisil M, Varga B, et al. Grain yield and protein concentration of two amaranth species (Amaranthus spp.) as influenced by the nitrogen fertilization[J]. European Journal of Agronomy, 2006, 25: 250-253.
[20]  张秀玲. 盐碱植物籽粒苋的开发利用[J]. 安徽农业科学, 2007, 35(4): 1074,1135.
[21]  Akanbi W B, Togun A O. The influence of maize-stover compost and nitrogen fertilizer on growth, yield and nutrient uptake of amaranth[J]. Scientia Horticulturae, 2002, 93: 1-8.
[22]  Erley G S, Kaul H P, Kruse M, et al. Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinoa, and buckwheat under differing nitrogen fertilization[J]. European Journal of Agronomy, 2005, 22: 95-100.
[23]  李廷轩,马国瑞,张锡洲. 富钾基因型籽粒苋主要根系分泌物及其对土壤矿物态钾的活化作用[J]. 应用生态学报, 2006, 17(3): 368-372.
[24]  秦嘉海. 耐盐牧草籽粒苋对河西走廊草甸盐土改土培肥效应[J]. 土壤通报, 2005, 36(5): 806-808.
[25]  Kingsbury R W, Epstein E. Salt sensitivity in wheat[J]. Plant Physiology, 1986, 80: 651-654.
[26]  罗庆云, 於丙军, 刘友良. NaCl胁迫下Cl- 和Na+对大豆幼苗胁迫作用的比较[J]. 中国农业科学, 2003, 36(11): 1390-1394.
[27]  Wellburn A R. The spectral determination of chlorophylls a and b, as well as total carotenoids using various solvents with spectrophotometers of different resolution[J]. Journal of Plant Physiology, 1994, 144: 307-313.
[28]  Sheng M, Tang M, Chen H, et al. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress[J]. Mycorrhiza, 2008, 18: 287-296.
[29]  陈健妙, 郑青松, 刘兆普, 等. 麻疯树(Jatropha curcas L.) 幼苗生长和光合作用对盐胁迫的响应[J]. 生态学报, 2009, 29(3): 1356-1365.
[30]  於丙军, 罗庆云, 刘友良. 盐胁迫对盐生野大豆生长和离子分布的影响[J]. 作物学报, 2001, 27(6): 776-780.
[31]  陕西师范大学. 农业化学常用分析方法[M]. 西安:陕西科学技术出版社, 1980: 283-284.
[32]  郑青松, 刘兆普, 刘友良, 等. 盐和水分胁迫对海蓬子、芦荟、向日葵幼苗生长及其离子吸收分配的效应[J]. 南京农业大学学报, 2004, 27(2): 16, 20.
[33]  Munns R. Comparative physiology of salt and water stress[J]. Plant, Cell and Environment, 2002, 25: 239-250.
[34]  刘一明, 程凤枝, 王齐, 等. 四种暖季型草坪植物的盐胁迫反应及其耐盐阈值[J]. 草业学报, 2009, 18(3): 192-199. 浏览
[35]  郑青松, 杜爽, 刘兆普, 等. 外源氯对番茄幼苗生长及养分吸收、利用的影响[J]. 园艺学报, 2006, 33(4): 849-852.
[36]  Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33: 317-345.
[37]  Maathuis F J M,Amtmann A. K+nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios[J]. Annals of Botany, 1999, 84: 123-133.
[38]  郑青松, 华春, 董鲜, 等. 盐角草幼苗对盐离子胁迫生理响应的特性研究[J]. 草业学报, 2008, 17(6): 164-168. 浏览
[39]  张金林, 陈托兄, 王锁民. 苄氨基嘌呤(BA)和脱落酸(ABA)对大麦Na+、K+选择性和游离脯氨酸分配的调节[J]. 草业学报, 2006, 15(5): 63-69.
[40]  李品芳, 杨志成. NaCl 胁迫下高羊茅生长及 K+、Na+吸收与运输的动态变化[J]. 草业学报, 2005, 14(4): 58-64.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133