全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2010 

不同盐碱化草地混播牧草对绵羊瘤胃发酵和日粮养分利用率的影响

, PP. 38-44

Keywords: 盐碱化草地,混播牧草,瘤胃发酵,消化率,氮平衡,绵羊

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究不同盐碱化草地混播牧草对绵羊瘤胃发酵、养分消化率和氮平衡的影响,试验选用12只5月龄、(34.6±0.57)kg体重的德国肉用美利奴杂交一代公绵羊,随机分为4组,每组3个重复,对照组饲喂精料补充料+玉米青贮;处理Ⅰ、Ⅱ和Ⅲ组分别饲喂精料补充料+轻度、中度和重度盐碱化草地混播牧草(披碱草、碱茅和沙打旺),每只羊精料补充料平均日喂600g,粗饲料自由采食。结果表明,处理Ⅰ和Ⅱ组瘤胃pH显著低于对照组和处理Ⅲ组(P<0.05),而瘤胃总挥发性脂肪酸浓度显著高于对照组(P<0.05);处理Ⅰ、Ⅱ和Ⅲ组瘤胃液丙酸、丁酸、戊酸、异丁酸和异戊酸摩尔比显著高于对照组(P<0.05),而瘤胃乙酸摩尔比和乙酸/丙酸比例显著低于对照组(P<0.05)。各组间干物质和有机物质采食量差异不显著,处理Ⅲ组中性洗涤纤维采食量显著高于其他各组,处理Ⅲ组和Ⅱ组酸性洗涤纤维含量显著高于对照组(P<0.05)。干物质、有机物质、无氮浸出物和能量消化率变化规律一致,处理Ⅲ组显著低于处理Ⅰ和Ⅱ组,处理Ⅰ和Ⅱ组显著低于对照组(P<0.05)。粗蛋白质、粗脂肪、中性洗涤纤维和酸性洗涤纤维消化率由低到高依次为处理Ⅲ组、处理Ⅱ组、处理Ⅰ和对照组,组间差异均显著(P<0.05)。处理Ⅲ和Ⅱ组采食氮显著低于处理Ⅰ组,处理Ⅰ组采食氮显著低于对照组(P<0.05)。沉积氮和沉积氮/可消化氮均以处理Ⅱ组最低,依次为处理Ⅲ、处理Ⅰ和对照组,组间差异均显著(P<0.05)。结果说明饲喂轻度和中度盐碱化草地混播牧草促进了绵羊瘤胃发酵,但降低了饲料消化率和氮的利用率,而重度盐碱化草地混播牧草则降低了绵羊瘤胃发酵、饲料消化率和氮的利用率。

References

[1]  Youssef K M, Fahmy A A, Essawy A M E, et al. Nutritional studies on Pennisetum americanum and Kochia indica fed to sheep under saline conditions of Sinai, Egypt[J]. American-Eurasian Journal of Agricultural & Environmental Science, 2009, 5(1): 63-68.
[2]  张仁平, 于磊, 鲁为华. 混播比例和刈割期对混播草地产量及品质影响的研究[J]. 草业科学, 2009, 26(5): 139-143.
[3]  Food and Agriculture Organization. FAO Land and Plant Nutrition Management Service[EB/OL]. (2008). 浏览
[4]  Flowers T J, Yeo A R. Breeding for salinity resistance in crop plants: Where next[J]. Australian Journal of Plant Physiology, 1995, 22(6): 875-884.
[5]  Hassan M, Shaer E I. Halophytes as cash crops for animal feeds in arid and semi-arid regions[A]. In: ztürk M, Waisel Y, Khan M A, et al. Biosaline Agriculture and Salinity Tolerance in Plants[M]. Switzerland: Birkhuser Verlag, 2006.
[6]  山仑, 徐炳成. 黄土高原半干旱地区建设稳定人工草地的探讨[J]. 草业学报, 2009, 18(2): 1-2. 浏览
[7]  Masters D, Norman H, Dynes R. A mix of plants lifts feed value from saline land[J]. Farming Ahead, 2002, 130: 40-42.
[8]  Norman H C, Dynes R A, Masters D G. Nutritive value of plants growing on saline land[A]. In: Proceedings of the 8th National Conference and Workshop on the Productive Use and Rehabilitation of Saline Lands (PUR$L)[C]. Fremantle, Western Australia, 2002: 59-69.
[9]  Loch D S, Barrett-Lennard E, Truong P. Role of salt tolerant plants for production, prevention of salinity and amenity values[A]. In: Proceedings of the 9th National Conference of Productive Use of Saline Lands (PUR$L)[C]. Queensland Department of Natural Resources and Mines, Rockhampton, Queensland, Australia, 2003: 1-16.
[10]  Warren B E, Bunny C J, Bryant E R. A preliminary examination of the nutritive value of four saltbush (Atriplex) species[J]. Proceedings of the Australian Society of Animal Production, 1990, 18: 424-427.
[11]  李勇, 郝正里, 李发弟, 等. 不同组合饲粮对绵羊消化代谢的影响[J]. 草业学报, 2009, 18(1): 112-117.
[12]  Mashhady A H, Sayed H I, Heakal M S. Effect of soil salinity and water stresses on growth and content of nitrogen, chloride and phosphate of wheat and triticale[J]. Plant and Soil, 1982, 68(2): 207-216.
[13]  Cheeke P R. In Natural Toxicants in Feeds, Forages and Poisonous Plants[M]. Danville, IL: Interstate Publishers Inc., 1998: 479.
[14]  Dakheel A A, Hadrami G A, Shoraby S A, et al. The potential of salt-tolerant plants and marginal resources in developing an integrated forage-livestock production system[C]. Proceedings, 2nd International Salinity Forum: Salinity, Water and Society-global Issues, Local Action. Adelaide Convention Centre, Adelaide, Australia, 2008: 1-4.
[15]  祁娟, 徐柱, 王海清, 等.旱作条件下披碱草属植物叶的生理生化特征分析[J]. 草业学报, 2009, 18(1): 39-45.
[16]  Jacobson D R, Lindahl I L, McNeill J J, et al. Feedlot bloat studies II. Physical factors involved in the etiology of frothy bloat[J]. Journal of Animal Science, 1957, 16(2): 515-524.
[17]  Melaku S, Peters K J, Tegegne A. Microbial nitrogen supply, nitrogen retention and rumen function in Menz sheep supplemented with dried leaves of multipurpose trees, their mixtures or wheat bran[J]. Small Ruminant Research, 2004, 52(1-2): 25-36.
[18]  杨胜. 饲料分析及饲料质量检测技术[M]. 北京: 北京农业大学出版社, 1996: 16-35.
[19]  Liu Q, Wang C, Huang Y X, et al. Effects of Lanthanum on rumen fermentation, urinary excretion of purine derivatives and digestibility in steers[J]. Animal Feed Science and Technology, 2008, 142(1-2): 121-132.
[20]  Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition[J]. Journal of Dairy Science, 1991, 74(6): 3583-3597.
[21]  袁缨. 动物营养学实验教程[M]. 北京: 中国农业大学出版社, 2006: 66-78.
[22]  Duffield T, Plaizier J C, Fairfield A, et al. Comparison of techniques for measurement of rumen pH in lactating dairy cows[J]. Journal of Dairy Science, 2004, 87(1): 59-66.
[23]  Russell J B, Wilson D B. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH?[J]. Journal of Dairy Science, 1996, 79(8): 1503-1509.
[24]  Thomas D, Blache D, Revell D, et al. The impact of high dietary salt and its implications for the management of livestock grazing saline land[EB/OL]. (2007-08-15). 浏览
[25]  王聪, 黄应祥, 刘强, 等. 硫酸铜对西门塔尔牛瘤胃发酵和尿嘌呤衍生物含量的影响[J]. 草业学报, 2008, 17(1): 80-84.
[26]  刘强, 黄应祥, 苗朝华, 等. 日粮添加赛乐硒对西门塔尔牛瘤胃发酵和尿嘌呤衍生物含量的影响[J]. 草业学报, 2007, 16(3): 101-107.
[27]  王聪, 刘强, 董群, 等. 日粮补充苹果酸对牛瘤胃发酵和养分消化代谢的影响[J]. 草业学报, 2009, 18(3): 224-231. 浏览
[28]  Satter L D, Slyter L L. Effect of ammonia concentration on rumen microbial protein production in vitro[J]. British Journal of Nutrition, 1974, 32(2): 199-208.
[29]  Aufrère J, Graviou D, Demarquilly C. Ruminal degradation of protein of cocksfoot and perennial ryegrass as affected by various stages of growth and conservation methods[J]. Animal Research, 2003, 52(2): 245-261.
[30]  Warren B E, Casson T. Saltbush quality and sheep performance[A]. In: Proceedings of a Workshop on Productive Use of Saline Land[C]. Perth, Western Australia, 1992: 71-74.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133