全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2010 

二穗短柄草幼胚再生体系及农杆菌介导转化的初步研究

, PP. 9-16

Keywords: 二穗短柄草,幼胚,愈伤组织,农杆菌,遗传转化

Full-Text   Cite this paper   Add to My Lib

Abstract:

以二穗短柄草3个品系BDR018,BD21,BD21-3的幼胚为外植体,研究了幼胚大小对胚性愈伤组织诱导和再生的影响。采用携带gus和bar基因双元表达载体(pDM805)的根癌农杆菌菌株AGL1对BDR018品系的幼胚愈伤组织进行了遗传转化。本实验探讨了影响幼胚愈伤组织诱导再生及遗传转化的几个因素。结果发现,幼胚大小介于0.5~1.0mm之间的愈伤组织诱导率最高。随愈伤组织年龄的增加,BDR018,BD21,BD21-3愈伤组织的再生率下降,白化率上升。愈伤组织年龄在5~8周范围内转化效率较高,平均转化效率为38.5%。真空处理5min和0.01%的SilwetL-77处理均可提高转化效率。对转化植株进行GUS基因化学组织检测和PCR鉴定,初步证明外源基因已整合再生植株基因组中。

References

[1]  杨成丽, 刘树楠, 周吉源, 等. 高效烟草遗传转化体系的建立及甜蛋白基因的导入[J]. 生物技术, 2004, 14: 9-11.
[2]  Philippe V, Barbare W, Vera T, et al. Agrobacterium-Mwndiated transformation of the temperate grass Brachypodium distachyon (genotype BD21) for T-DNA insertional mutagenesis[J]. Plant Biotechnology, 2008, 6(3): 236-245.
[3]  Cheng Ming. Invited review: Factors influencing Agrobacterium-mediated transformation of monocotyledonous species, In Vitro Cell. Dev[J]. Biology of Plant, 2004, 40: 31-45.
[4]  Christiansen P, Didion T, Andersen C H, et al. A rapid and efficient transformation protocol for the grass Brachypodium distachyon[J]. Plant Cell Reports, 2005, 23: 751-758
[5]  Vogel J P, Leong O M. Agrobacterium-mediated transformation of the model grass Brachypodium distachyon (abstract)[J]. In Vitro Cellular and Developmental Biology, 2004, 40: 29.
[6]  Vain P, Worland B, et al. Agrobacterium-mediated transformation of the temperate grass Brachypodium distachyon (genotype Bd21) for T-DNA insertional mutagenesis[J]. Plant Biotechnology, 2008, 6: 236-245.
[7]  黎茵, 黄霞, 黄学林. 根癌农杆菌介导的苜蓿体胚转化[J]. 植物生理与分子生物学学报, 2003, 29(2): 109-113.
[8]  张磊, 吴殿星, 胡繁荣, 等. 结缕草组织培养及农杆菌介导转化的主要因子优化[J]. 草业学报, 2004, 13(4): 100-105.
[9]  邹湘辉, 庄东红, 胡忠, 等. 负压和超声波处理对农杆菌介导的花生遗传转化效率的影响[J]. 中国油料作物学报, 2004, 26(1): 12-16.
[10]  Tateoka T. Proposition of a new phylogenic system of Poaceae[J]. Japan Bot, 1957, 32: 275-287.
[11]  Draper J, Mur L A J, Jenkins G, et al. Brachypodium distachyon: A new model system for functional genomics in grasses[J]. Plant Physiology, 2001, 127: 1539-1555.
[12]  Kellogg E A. Evolutionary history of the grasses[J]. Plant Physiology, 2001, 125: 1198-1205.
[13]  Gaut B S. Evolutionary dynamics of grass genomes[J]. New Phytologist, 2002, 154: 15-28.
[14]  Havukkala I J. Cereal genome analysis using rice as a model[J]. Current Opinion in Genetics & Development, 1996, 6: 711-714.
[15]  Tyagi A k, Mohanty A. Rice transformation for crop improvement and functional genomics[J]. Plant Science, 158: 1-18.
[16]  Shi Y, Draper J, Stace C. Ribosomal DNA variation and its phylogenetic implication in the genus Brachypodium (Poaceae)[J]. Plant Syst Evol, 1993, 188: 125-138.
[17]  Vogel J, Garvin D, Leong O, et al. Agrobacterium mediated transformation and inbred line development in the model grass Brachypodium distachyon[J]. Plant Cell, Tissue and Organ Culture, 2006, 85: 199-211.
[18]  Tingay S, McElroy D, Kalla R, et al. Agrobacterium tumefaciens-mediated barley transformation[J]. Plant Journal, 1997, 11: 1369-1376.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133