Cherney J H, Cherney D J R, Akin D E, et al. Potential of brown-midrib, low-lignin mutants for improving forage quality[J]. Advances in Agronomy, 1991, 46: 157-198.
[5]
Barriere Y, Ralph J, Mechin V, et al. Genetic and molecular basis of grass cell wall biosynthesis and degradability II. Lessons from brown-midrib mutants[J]. Comptes Rendus Biologies, 2004, 327: 847-860.
[6]
Jorgenson R L. Brown midrib in maize and its lignage relations[J]. American Society of Agronomy, 1931, 23: 549-557.
Porter K S, Axtell J D, Lechtenberg V L, et al. Phenotype, fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib (bmr) mutants of sorghum[J]. Crop Sience, 1978, 18: 205-209.
[9]
Pedersen J F, Funnell D L, Toy J J, et al. Registration of seven forage sorghum genetic stocks near-isogenic for the brown midrib genes bmr-6 and bmr-12[J]. Crop Science, 2006, 46: 490-491.
[10]
Oliver A L, Pedersen J F, Grant R J, et al. Comparative effects of the sorghum bmr-6 and bmr-12 genes I. forage sorghum yield and quality[J]. Crop Science, 2005, 45(6): 2234-2239.
[11]
Pilonel C. Involvement of cinnamyl-alcohol dehydrogenase in the control of lignin formation in Souhum bicolor L. Moench[J]. Planta, 1991, 185: 538.
[12]
Brown S M, Hopkin A, Mitchell M L, et al. Multiple methods for the identification of polymorphic simple sequence repeats(SSR) in sorghum [Sorghum bicolor L. moench][J]. Thoretical and Applied Genetics, 1993, 93: 190-198.
[13]
Lender E S, Green P, Abrahamson J. Mapmaker: An interactive computer for constrcting primary genentics linkage maps of experimental and natural populations[J]. Genetics, 1987, 1: 174-182.
[14]
Vogler R K, Tesso T T, Johnson K D, et al. The effect of allelic variation on forage quality of brown midrib sorghum mutants with reduced caffeic acid Omethyl transferase activity[J]. African Journal of Biochemistry Research, 2009, 3(3): 70-76.