全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2010 

半扭卷马先蒿个体内的种子生产模式及其对资源的响应

, PP. 236-242

Keywords: 半扭卷马先蒿,密度,剪叶,果实位置,雌性繁殖成功

Full-Text   Cite this paper   Add to My Lib

Abstract:

花序内部雌性繁殖成功的差异在很多植物当中都存在,解释花序内部雌性繁殖成功的假说主要有3种:传粉不均匀假说、结构效应假说和资源限制假说。但外部因素对植物花序内雌性生殖成功模式的影响的研究非常少。本实验对半扭卷马先蒿设置了3个密度梯度、2个剪叶水平,收取不同部位的果实,以研究密度和剪叶对半扭卷马先蒿个体内种子产量的影响。实验参数包括:单个果实种子数、种子重、种子均重和胚珠数。同时,还做了人工补充授粉和自然授粉单个果实种子数/胚珠数和单株果实数/花数的比较实验,结果证明,半扭卷马先蒿的繁殖不受花粉资源的限制;密度对单个果实的种子数、种子均重有显著影响。剪叶对单个果实的种子数、败育数、胚珠数、种子重有显著影响。剪叶和位置的交互作用在单个果实的种子数、败育数、胚珠数方面有显著作用,密度和位置的交互作用对上述参数均无显著影响。在剪叶和密度处理下,位置对果实的上述参数均有显著影响,剪叶植株的单个果实种子数、败育数、胚珠数、种子重均小于未剪叶的植株。由此可以看出,在半扭卷马先蒿的雌性繁殖成功当中,结构效应和资源限制假说可能同时起着作用。且资源条件不但影响着半扭卷马先蒿雌性生殖成功,而且影响着花序内的变异程度,表明了该种植物对种子生产的可塑性调节。

References

[1]  Vallius E. Position-dependent reproductive success of flowers in Dactylorhiza maculata (Orchidaceae)[J]. Functional Ecology, 2000, 14: 573-579.
[2]  Ashman T L, Hitchens M S. Dissecting the causes of variation in intra-inflorescence allocationin sexually polymorphic species, Fragaria virginiana (Rosaceae)[J]. American Journal of Botany, 2000, 87: 197-204.
[3]  Medrano M, Guitlan P, Guitan J. Patterns of fruit and seed set within Pancratium maritimum (Amaryllidaceae): Uniform pollination, resource limitation, or architecture effect[J]. American Journal of Botany, 2000, 87: 493-501.
[4]  Kudo G, Maeda T, Narita K. Variation in floral sex allocation and reproductive success within inflorescences of Corydalis ambigua (Fumariaceae): Pollination efficiency or resource limitation[J]. Journal of Ecology, 2001, 89: 48-56.
[5]  Buide M L. Intra-inflorescence variation in floral traits and reproductive success of the hermaphrodite Silene acutifolia[J]. Annual Botany, 2004, 94: 441-448.
[6]  Kliber A, Eckert C G. Sequential decline in allocation among flowers within inflorescences: Proximate mechanisms and adaptive significance[J]. Ecology, 2004, 85: 1675-1687.
[7]  Berry P E, Calvo R N. Pollinator limitation and position dependent fruit set in the high and eanorchid Myrosmodescoch-leare (Orchidaceae)[J]. Plant Systematics and Evolution, 1991, 174: 93-101.
[8]  Vaughton G. Nonrandom patterns of fruit set in Banksia spinulosa (Proteaceae): Inter ovary competition within and among in florescences[J]. International Journal of Plant Sciences, 1993, 154: 306-381.
[9]  樊宝丽, 赵志刚, 孟金柳, 等. 露蕊乌头(Aconitum gymnandrum Maxim)花序内位置依赖的性分配[J]. 生态学报, 2008, 6:2909-2915.
[10]  Zimmerman J K, Aide T M. Patterns of fruit production in a Neotropical orchid: Pollinator vs. resource limitation[J]. American Journal of Botany, 1989, 76: 67-73.
[11]  Mosjidis J A, Yermanos D M. Plant position effect on seed weight, oil content and oil composition in sesame[J]. Euphytica, 1985, 34:193-199.
[12]  Nekonam M S, Razmjoo K S. Effect of plant density on yield, yield components and effective medicine ingredients of blond psyllium (Plantago ovata Forsk.)accessions[J]. International Journal of Agriculture and Biology, 2007, 4: 606-609.
[13]  Oscar J, Rocha, Stephenson A G. Effect of ovule position in fabaceous flower on seed set and out-crossing rates[J]. Botanical Gazette, 1990, 137: 250-254.
[14]  Ashman T L, Jennifer P, Chriaty D. Size denpendent sex allocation in a genodioecious strawberry: The effect of sex morph or inflorescence architecture[J]. International Journal of Plant Science, 2001, 162: 327-334.
[15]  Zhao Z G, Meng J L, Fan B L, et al. Reproductive patterns within racemes in protandrous Aconitum gymnandrum (Ranunculaceae): Potential mechanism and among-family variation[J]. Plant Systematics and Evolution, 2008, 243: 247-256.
[16]  Wolfe L M. Why does the size of reproductive structures decline through time in Hydrophyllum appendiculatum (Hydro-phyllaceae): Developmental constraints vs resource limitation[J]. American Journal of Botany, 1992, 79: 1286-1290.
[17]  Diggle P K. Arechitecture effect and interpretation of fruit and seed development[J]. Annual Review of Ecology and Systematics, 1995, 26: 531-552.
[18]  Diggle P K. Ontogenic and contingency of floral morphlogy, the effects of arechitecture and resource limitation[J]. International of Plant Science, 1997, 158: 99-107.
[19]  Thomson J D. Development of ovules and pollen among flowers within inflorescences[J]. Evolution in Plants, 1989, 3: 65-68.
[20]  Kwak M M. Pollination and pollen flow disturbed by honeybees in bumblebee-pollinated Rhinathus populations[A]. In: Andel J, Brakker J P, Sanydon R W. Disturbance in Grasslands[M]. Kordrcht: Junk, 1987: 273-283.
[21]  Drisig H. Ideal free distribution of nectar foaring bumblebees[J]. Oikos, 1995, 72: 161-172.
[22]  Kunin W E. Population size and density effects in pollination: Pollination foaring and plant reproductive success in experimental arrays of Brassica kaber[J]. Ecology, 1997, 85: 225-234.
[23]  Bosch M, Waser N M. Effect of local density on pollination and reproduction in Delphmium nuttallianum and Aconitum columbianum (Ranunculaceae)[J]. American Journal of Botany, 1999, 86: 871-879.
[24]  Zhao Z G, He Y L, Wang M T, et al. Variations of flower size and reproductive traits in self-incompatible Trollius ranunculoides (Ranunculaceae) among local habitats at Alpine Meadow[J]. Plant Ecology, 2007, 193: 241-251.
[25]  Sangoil L. Understanding plant density effects on maize growth and development: An important issue to maximize grain yield[J]. Cioncia Rural, 2000, 31: 159-168.
[26]  Bos H J, Vos J, Struik P C. Morphological analogy of plant density on early leaf area growth in maize[J]. Netherland General of Agriculture Science, 2000, 48: 199-212.
[27]  Iwaizumi M G, Sakai S. Variation in flower biomass among nearby populations of impatiens textori (aminaceae): Effects of population plant densities[J]. Canada Journal Botany, 2004, 82: 563-572.
[28]  Bosch M, Nicolas M, Waser. Experimental manipulation of plant and its effect on pollination and reproduction of two confamilial montane herd[J]. Oecologia, 2001, 126: 76-83.
[29]  Kirchner F, Luigten S H, Lmbert E, et al. Effects of local density on insect visitation and fertilization success in the narrow-endemic Centaurea corymbosa (Asteraceae)[J]. Oikos, 2005, 111: 130-142.
[30]  Najafi F, Moghadam P R. Effect of irrigation regimes and plant density on yield and agronomic characteristics of blond psyllium (Plantago ovata)[J]. Japan Agriculture Science Technology, 2002, 16: 59-65.
[31]  Pawar S U, Kharwade M L, Wawari H. Effect of plant density on vegetative growth and yield performance of different varieties of French bean under irrigated condition[J]. Karnataka Japan Agriculture Science, 2007, 20: 684-685.
[32]  Ali M, Singh K K. Performance of chickpea (Cicer arietinum) genotypes at varying population densities under late sown conditions[J]. Indian Journal of Agricultural Sciences, 1999, 69: 393-395.
[33]  Brunet J. Male reproductive success and variation in fruit and seed set in Aquilegia caerulea (Ranunculaceae)[J]. Ecology, 1996, 77: 2458-2471.
[34]  Cushman K E, Horgan T E, Nagel D H, et al. Plant density affects pumpkin size and weight but not yield[C]. Annual Report of the North Mississipp, Research & Extension Center, Miss. Agriculture & For Expect Statistics Information, Bull, 2002, 386: 282-283.
[35]  Muir J P, Reed R L, Malinowski D P. Trailling and smooth-seeded wild beans: Native annual warm season legumes for Texas[J]. Forage Research in Texas, 2003: 5254-5267.
[36]  Pellegrino G, Musacchio A. Effect of defoliation on reproductive success in two orchids, Serapias vomeracea and Dactylorhiza[J]. Annales Botanici Fennici, 2006, 48: 123-128.
[37]  Larson B M H, Barrett S C H. The pollination ecology of buzz-pollinated Rhexia virginica (Melastomataceae)[J]. American Journal Botany, 1999, 87: 371-385.
[38]  Gross C L, Bartier F V, Mulligan D R. Floral structure, breeding system and fruit-set in the threatened sub-shrub Tetratheca juncea Smith(Tremandraceae)[J]. Annual Botany, 2003, 92: 771-777.
[39]  Liu H, Koptur S. Breeding system and pollination of a narrowly endemic herb of the lower Florida keys: Impacts of the urban-wild land interface[J]. American Journal of Botany, 2003, 90: 1180-1184.
[40]  Byrne M, Mazer S J. The effect of position on fruit characteristics, and relationships among components of yield in Phytolacca rivinoides (Phytolaccaceae)[J]. Biotropica, 1990, 22: 353-365.
[41]  Alan O, Eser B. Pepper seed yield and quality in relation to fruit position of mother plant[J]. Pakistan Jornal of Biological Sciences, 2007, 10: 4251-4255.
[42]  Hiei K, Ohara M. Variation in fruit-and seed set among and within in florescences of Melampyrum roseum var. japonicum (Scrophulariaceae)[J]. Plant Species Biology, 2002, 17: 13-23.
[43]  Boroomandan P, Khoramivafa M, Haghi Y, et al. The effect of nitrogen starter fertilizer and plant density on yield, yield components and oil and protein compotent of soybean[J]. Pakistan Gournal of Biological Science, 2009, 12:378-382.
[44]  王鹤龄, 牛俊义, 郑华平, 等. 玛曲高寒沙化草地生态位特征及其施肥改良研究[J]. 草业学报, 2008, 17(6):18-24. 浏览
[45]  Guitian J, Navarro L. Allocation of reproductive resources within the inforescences of Petrocoptis grandifora (Caryo-phyllaceae)[J]. Canada Journal Botany, 1996, 74: 1482-1486.
[46]  Guitian J, Medrano M, Oti J. Variation in floral sex allocation in Polygonatum odoratum (Liliaceae)[J]. Annual Botany, 2004, 94: 433-440.
[47]  Ishii H S, Sakai S. Temporal variation in floral display size and individual floral sex allocation in racemes of Narthecium asiaticum (Liliaceae)[J]. American Journal of Botany, 2002, 89: 441-446.
[48]  Mazer S J, Dawson K A. Size-dependent sex allocation within flowers of the annual herb Clarkia unguiculata (Onagraceae): Ontogenetic and among-plant variation[J]. American Journal of Botany, 2001, 88: 819-831.
[49]  Erba S, Bayday H. Defoliation effects on sunflower (Helianthus annuus L.) seed yield and oil quality[J]. Turk Journal Biology, 2007, 31: 115-118.
[50]  Adjei M B, Mislevy P, Chason W. Timing, defoliation management and nitrogen effects on seed yield of argentine bahiagra[J]. Agronomy Journal, 2000, 92: 36-41.
[51]  Macior L W, Ya T, Zhang J C. Reproductive biology of Pedicularis (Scrophulariaceae) in the Sichuan Himalaya[J]. Plant Species Biology, 2001, 16: 83-89.
[52]  Wang H, Mill R R, Blackmore S. Pollen morphology and infra-generic evolutionary relationships in some Chinese species of Pedicularris (Scrophulariaceae)[J]. Plant Systematics and Evolution, 2003, 237:1-17.
[53]  Yang C F, Guo Y H. Pollen size-number trade-off and pollen-pistil relationships in Pedicularis (Orobanchaceae)[J]. Plant Systematics and Evolution, 2004, 247: 177-185.
[54]  Yang C F, Guo Y H, Gituru R W, et al. Variation in stigma morphology-How does it contribute to pollination adaption in Pedicularis (Orobanchaceae)[J]. Plant Systematics and Evolution, 2002, 236: 89-98.
[55]  Tang Y, Xie J S. A pollination ecology study of Pedicularis linnaeus (Orobanchaceae)in a subalpine to alpine area of northwest Sichuan, China[J]. Arctic, Antactic, and Apline Research, 2006, 38: 446-453.
[56]  Yang C F, Gituru R W, Guo Y H. Reproductive isolation of two sympatric louseworts, Pedicularis rhinanthoides and Pedicularis longiflora (Orobanchaceae): How does the same pollinator type avoid interspecific pollen transfer[J]. Biology Journal, 2007, 23: 37-48.
[57]  Sun Y H, Guo Y H, Gituru R W, et al. Corolla wilting facilitates delayed autonomous self-pollination in Pedicularis dunniana (Orobanchaceae)[J]. Plant Systematics and Evolution, 2005, 251: 229-237.
[58]  傅立国, 陈潭清, 朗楷永, 等. 高等植物[A]. 马先蒿属[M]. 青岛:青岛出版社, 2004.
[59]  Du G Z, Wang G. Succession and qualitative change of artificial grassland of Gannan sub-alpine meadow[J]. Acta Botanica Sinica, 1995, 37: 306-313.
[60]  Kawai Y, Kudo G. Effectiveness of buzz pollination in Pedicularis chamissonis: Significance of multiple visits by bumblebees[J]. Ecology Research, 2008, 10: 1284-1293.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133