全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2013 

水淹对双穗雀稗抗氧化酶活性及碳水化合物含量的影响

, PP. 217-224

Keywords: 双穗雀稗,水淹,抗氧化酶活性,可溶性糖含量,淀粉含量

Full-Text   Cite this paper   Add to My Lib

Abstract:

植物在水淹条件下其体内氧气和二氧化碳等气体扩散受到限制,但其体内的抗氧化酶防御系统为植株抵御厌氧或缺氧胁迫起着重要作用。本试验比较研究了双穗雀稗经受不同程度的水淹胁迫后,植株体内抗氧化酶活性及可溶性糖和淀粉含量的变化。结果表明,1)从抗氧化酶的保护机制来看,水淹处理植株CAT,SOD,POD,GR和APX活性都随着水淹深度和水淹持续时间的增加而增加,且其值都较未淹对照植株高。该结果支持在水淹胁迫条件下,植株通过包括涉及CAT,SOD,POD,GR和APX等多种抗氧化酶共同作用来保护植株免受活性氧分子的毒害。2)被淹双穗雀稗植株茎和根的可溶性糖和淀粉含量随着水淹持续时间的递增而递减。水淹深度越大的处理,随水淹持续时间的递增其下降幅度也相应增大。但从可溶性糖和淀粉含量的变化趋势可以初步说明,水淹双穗雀稗植株体内的淀粉能很好的水解成植株厌氧代谢所需的可溶性糖形式,产生水淹胁迫下维持植株生长或生存所需的能量,从而捍卫其耐水淹能力。

References

[1]  Lin K H R, Weng C C, Lo H F, et al. Study of the root antioxidative system of tomatoes and eggplants under waterlogged conditions. Plant Science, 2004, 167: 355-365.
[2]  Ahmed S, Nawata E, Hosokawa M, et al. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Science, 2002, 163: 117-123.
[3]  Sairam R K, Rao K V, Srivastava G C. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 2002, 163: 1037-1046.
[4]  谭淑端, 朱明勇, 党海山, 等. 三峡库区狗牙根对深淹胁迫的生理响应. 生态学报, 2009, 29: 3685-3691.
[5]  Das K K, Sarkar R K, Ismail A M. Elongation ability and non-structural carbohydrate levels in relation to submergence tolerance in rice. Plant Science, 2005, 168: 131-136.
[6]  Luo F L, Nagel K A, Scharr H, et al. Recovery dynamics of growth, photosynthesis and carbohydrate accumulation after de-submergence: a comparison between two wetland plants showing escape and quiescence strategies. Annals of Botany, 2011, 107: 49-63.
[7]  谭淑端, 张守君, 张克荣, 等. 长期深淹对三峡库区三种草本植物的恢复生长及光合特性的影响. 武汉植物学研究, 2009, 27(4): 391-396.
[8]  张志良, 瞿伟菁. 植物生理学实验指导. 北京: 高等教育出版社, 2002.
[9]  Aebi H, Bergmeyer H U. Methods of Enzymatic Analysis. New York and London: Bergstr. (Germany) and Academic Press, 1983.
[10]  李合生. 植物生理生化实验技术与方法. 北京: 高等教育出版社, 2000.
[11]  Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta, 1976, 133: 21-25.
[12]  Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 1981, 22: 867-880.
[13]  Das K K, Sarkar R K, Ismail A M. Elongation ability and non-structural carbohydrate levels in relation to submergence tolerance in rice. Plant Science, 2005, 168: 131-136.
[14]  Jackson M, Ram P. Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Annals of Botany, 2003, 91: 227-241.
[15]  Sachs M, Subbaiah C, Saab I. Anaerobic gene expression and flooding tolerance in maize. Journal of Experimental Botany, 1996, 47: 1-15.
[16]  Tan S D, Zhu M Y, Zhang Q F. Physiological responses of bermudagrass (Cynodon dactylon) to submergence. Acta Physiologiae Plantarum, 2009, 32: 133-140.
[17]  Fukao T, Xu K, Ronald P, et al. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. The Plant Cell, 2006, 18: 2021-2034.
[18]  刘晓军, 洪光宇, 袁志诚, 等. 干热胁迫下两种苇状羊茅对不同水肥处理的响应机理. 草业学报, 2011, 20(1): 46-54.  
[19]  Monk L, Fagerstedt K, Crawford R. Superoxide dismutase as an anaerobic polypeptide 1 A key factor in recovery from oxygen deprivation in Iris pseudacorus. Plant Physiology, 1987, 85: 1016-1020.
[20]  Fedoroff N. Redox regulatory mechanisms in cellular stress responses. Annals of Botany, 2006, 98: 289-300.
[21]  王丹, 宣继萍, 郭海林, 等. 结缕草的抗寒性与体内碳水化合物、脯氨酸、可溶性蛋白季节动态变化的关系. 草业学报, 2011, 20(4): 98-107.  
[22]  黄德君, 毛祝新, 傅华. 牧草中水溶性碳水化合物及其影响因素. 草业学报, 2011, 20(6): 270-278.  
[23]  Schluter U, Crawford R. Long-term anoxia tolerance in leaves of Acorus calamus L. and Iris pseudacorus L. Journal of Experimental Botany, 2001, 52(364): 2213-2225.
[24]  Kato-Noguchi H. Sugar utilization and anoxia tolerance in rice roots acclimated by hypoxic pretreatment. Journal of Plant Physiology, 2004, 161: 803-808.
[25]  Gibbs J, Greenway H. Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Functional Plant Biology, 2003, 30(1): 1-47.
[26]  Greenway H, Gibbs Jane. Mechanisms of anoxia tolerance in plants. Ⅱ. Energy requirements for maintenance and energy distribution to essential processes. Functional Plant Biology, 2003, 30: 999-1036.
[27]  Barclay A M, Crawford R M M. The effect of anaerobiosis on carbohydrate levels in storage tissues of wetland plants. Annals of Botany, 1983, 51: 255-259.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133