Hasan S A, Fariduddin Q, Ali B, et al. Cadmium: Toxicity and tolerance in plants. Journal of Environmental Biology, 2009, 30(2): 165-174.
[7]
Mench M, Morel J L, Guckert A. Metal binding properties of high molecular weight soluble exudates from maize (Zea mays) roots. Biology and Fertility of Soils, 1987, 3(3): 165-169.
[8]
Seregin I V, Kozhevnikova A D. Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium. Russian Journal of Plant Physiology, 2008, 55(1): 1-22.
[9]
Fan J L, Wei X Z, Wan L C, et al. Disarrangement of actin filaments and Ca2+ gradient by CdCl2 alters cell wall construction in Arabidopsis thaliana root hairs by inhibiting vesicular trafficking. Journal of Plant Physiology, 2011, 168(11): 1157-1167.
[10]
Qureshi J A, Collin H A, Hardwick K, et al. Metal tolerance in tissue cultures of Anthoxanthum odoratum. Plant Cell Reports, 1981, 1(2): 80-82.
[11]
Grebe M. Plant biology: unveiling the Casparian strip. Nature, 2011, 473(7347): 294-295.
[12]
Alassimone J, Roppolo D, Geldner N, et al. The endodermis—development and differentiation of the plant’s inner skin. Protoplasma, 2011, DOI: 10.1007/s00709-011-0302-5.
[13]
Zeier J, Schreiber L. Chemical composition of hypodermal and endodermal cell walls and xylem vessels isolated from Clivia miniata. Plant Physiology, 1997, 113(4): 1223-1231.
[14]
Seregin I V, Ivanov V B. Histochemical investigation of cadmium and lead distribution in plants. Russian Journal of Plant Physiology, 1997, 44(6): 791-796.
[15]
Cataldo D A, Garland T R, Wildung R E. Cadmium uptake kinetics in intact soybean plants. Plant Physiology, 1983, 73(3): 844-848.
[16]
McCully M. How do real roots work? Some new views of root structure. Plant Physiology, 1995, 109(1): 1-6.
[17]
Saathoff A J, Ahner B, Spanswick R M, et al. Detection of phytochelatin in the xylem sap of Brassica napus. Environmental Engineering Science, 2011, 28(2): 103-111.
[18]
Senden M, Vand der Meer A, Verburg T G, et al. Effects of cadmium on the behaviour of citric acid in isolated tomato xylem cell walls. Journal of Experimental Botany, 1994, 45(5): 597-606.
[19]
Salt D E, Prince R C, Pickering I J, et al. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiology, 1995, 109(4): 1427-1433.
[20]
Wei Z, Wong J W, Hong F, et al. Determination of inorganic and organic anions in xylem saps of two contrasting oilseed rape (Brassica juncea L.) varieties: Roles of anions in long-distance transport of cadmium. Microchemical Journal, 2007, 86(1): 53-59.
[21]
Uraguchi S, Mori S, Kuramata M, et al. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany, 2009, 60(9): 2677-2688.
Küpper H, Lombi E, Zhao F J, et al. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta, 2000, 212(1): 75-84.
[24]
Salt D E, Prince R C, Pickering I J, et al. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiology, 1995, 109(4): 1427-1433.
Kim D-Y, Bovet L, Kushnir S, et al. AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiology, 2006, 140(3): 922-932.
[28]
Bhuiyan M S U, Min S R, Jeong W J, et al. Overexpression of AtATM3 in Brassica juncea confers enhanced heavy metal tolerance and accumulation. Plant Cell Tissue and Organ Culture, 2011, 107(1): 69-77.
[29]
Conte S S, Walker E L. Transporters contributing to iron trafficking in plants. Molecular Plant, 2011, 4(3): 464-476.
[30]
Wycisk K, Kim E J, Schroeder J I, et al. Enhancing the first enzymatic step in the histidine biosynthesis pathway increases the free histidine pool and nickel tolerance in Arabidopsis thaliana. FEBS Letters, 2004, 578(1-2): 128-134.
[31]
Lee M, Lee K, Lee J, et al. AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiology, 2005, 138(2): 827-836.
[32]
Ann M. Ospdr9, which encodes a PDR-type ABC transporter, is induced by heavy metals, hypoxic stress and redox perturbations in rice roots. FEBS Letters, 2003, 553(3): 370-376.
[33]
Klein M, Burla B, Martinoia E. The multidrug resistance-associated protein (MRP/ABCC) subfamily of ATP-binding cassette transporters in plants. FEBS Letters, 2006, 580(4): 1112-1122.
[34]
Schneider T, Schellenberg M, Meyer S, et al. Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants. Proteomics, 2009, 9(10): 2668-2677.
[35]
Gaillard S, Jacquet H, Vavasseur A, et al. AtMRP6/AtABCC6, an ATP-binding cassette transporter gene expressed during early steps of seedling development and up-regulated by cadmium in Arabidopsis thaliana. BMC Plant Biology, 2008, 8: 1-11.
[36]
Wojas S, Hennig J, Plaza S, et al. Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root-to-shoot transport and accumulation. Environmental Pollution, 2009, 157(10): 2781-2789.
[37]
Bovet L, Eggmann T, Meylan-Bettex M, et al. Transcript levels of AtMRPs after cadmium treatment: induction of AtMRP3. Plant, Cell & Environment, 2003, 26(3): 371-381.
[38]
Tommasini R, Vogt E, Fromenteau M, et al. An ABC-transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity. The Plant Journal, 2002, 13(6): 773-780.
[39]
Lee S, Kim Y Y, Lee Y, et al. Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiology, 2007, 145(3): 831-842.
Banci L, Bertini I, Ciofi-Baffoni S, et al. Structural basis for metal binding specificity: the N-terminal cadmium binding domain of the P1-type ATPase CadA. Journal of Molecular Biology, 2006, 356(3): 638-650.
[42]
Liu J, Dutta S J, Stemmler A J, et al. Metal-binding affinity of the transmembrane site in ZntA: Implications for metal selectivity. Biochemistry, 2006, 45(3): 763-772.
[43]
Lee J, Bae H, Jeong J, et al. Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals. Plant Physiology, 2003, 133: 589-596.
[44]
Gravot A, Lieutaud A, Verret F, et al. AtHMA3, a plant P-1B-ATPase, functions as a Cd/Pb transporter in yeast. FEBS Letters, 2004, 561: 22-28.
[45]
Morel M, Crouzet J, Gravot A, et al. AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiology, 2009, 149(2): 894-904.
[46]
Ueno D, Yamaji N, Kono I, et al. Gene limiting cadmium accumulation in rice. Proceedings of the National Academy of Sciences, 2010, 107(38): 16500-16505.
[47]
Mills R F, Francini A, Ferreira da Rocha PSC, et al. The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Letters, 2005, 579(3): 783-791.
[48]
Wong C K E, Cobbett C S. HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytologist, 2009, 181(1): 71-78.
[49]
Verret F, Gravot A, Auroy P, et al. Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Letters, 2004, 576(3): 306-312.
[50]
Hanikenne M, Talke I N, Haydon M J, et al. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature, 2008, 453(7193): 391-395.
[51]
Guimaraes M A, Gustin J L, Salt D E. Reciprocal grafting separates the roles of the root and shoot in zinc hyperaccumulation in Thlaspi caerulescens. New Phytologist, 2009, 184(2): 323-329.
[52]
Papoyan A, Kochian L V. Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiology, 2004, 136(3): 3814-3823.
[53]
Lee S, Kim Y Y, Lee Y, et al. Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiology, 2007, 145(3): 831-842.
[54]
Hirschi K D, Korenkov V D, Wilganowski N L, et al. Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiology, 2000, 124(1): 125-133.
[55]
Koren’kov V, Park S, Cheng N H, et al. Enhanced Cd2+-selective root-tonoplast-transport in tobaccos expressing Arabidopsis cation exchangers. Planta, 2007, 225(2): 403-411.
[56]
Cheng N, Pittman J K, Shigaki T, et al. Characterization of CAX4, an Arabidopsis H+/cation antiporter. Plant Physiology, 2002, 128(4): 1245-1254.
[57]
Berezin I, Mizrachy-Dagry T, Brook E, et al. Overexpression of AtMHX in tobacco causes increased sensitivity to Mg2+, Zn2+, and Cd2+ ions, induction of V-ATPase expression, and a reduction in plant size. Plant Cell Reports, 2008, 27(5): 939-949.
[58]
Korshunova Y O, Eide D, Gregg Clark W, et al. The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Molecular Biology, 1999, 40(1): 37-44.
[59]
Kramer U, Talke I N, Hanikenne M. Transition metal transport. FEBS Letters, 2007, 581(12): 2263-2272.
[60]
Arazi T, Sunkar R, Kaplan B, et al. A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. The Plant Journal, 1999, 20(2): 171-182.