全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2013 

植物积累重金属的机理研究进展

, PP. 300-307

Keywords: ,,转运,积累,基因

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,由工业、农业和采矿活动所引起的重金属污染日益严重并受到广泛关注。植物积累重金属的机理也成为研究热点。重金属通过根表皮从土壤溶液中进入植物体内,通过共质体途径和质外体途径进入木质部并被转运到地上部。许多基因与重金属转运和积累过程相关。其中具有代表性的是ABC转运蛋白家族相关基因和P-typeATPase相关基因等。本研究从植物各部位对重金属吸收转运作用及重金属转运相关基因的最新研究进展进行总结,同时对今后的研究提出看法。

References

[1]  刘碧英, 潘远智, 赵杨迪. 沿阶草不同叶片对土壤铅胁迫的生理生化响应. 草业学报, 2011, 20(4): 123-128. 浏览
[2]  陈良, 刘兆普, 隆小华, 等. 镉胁迫下两种菊芋幼苗的光合作用特征及镉吸收转运差异的研究. 草业学报, 2011, 20(6): 60-67. 浏览
[3]  Evangelou V P. Environmental Soil and Water Chemistry: Principles and Applications. New York: John Wiley & Sons, 1998: 476-478.
[4]  匡艺, 李廷轩, 余海英. 小黑麦植株铁、锰、铜、锌含量对氮素反应的品种差异及其类型. 草业学报, 2011, 20(4): 82-89. 浏览
[5]  张玉秀, 于飞, 张媛雅, 等. 植物对重金属镉的吸收转运和累积机制. 中国生态农业学报, 2008, 16(5): 1317-1321.
[6]  Hasan S A, Fariduddin Q, Ali B, et al. Cadmium: Toxicity and tolerance in plants. Journal of Environmental Biology, 2009, 30(2): 165-174.
[7]  Mench M, Morel J L, Guckert A. Metal binding properties of high molecular weight soluble exudates from maize (Zea mays) roots. Biology and Fertility of Soils, 1987, 3(3): 165-169.
[8]  Seregin I V, Kozhevnikova A D. Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium. Russian Journal of Plant Physiology, 2008, 55(1): 1-22.
[9]  Fan J L, Wei X Z, Wan L C, et al. Disarrangement of actin filaments and Ca2+ gradient by CdCl2 alters cell wall construction in Arabidopsis thaliana root hairs by inhibiting vesicular trafficking. Journal of Plant Physiology, 2011, 168(11): 1157-1167.
[10]  Qureshi J A, Collin H A, Hardwick K, et al. Metal tolerance in tissue cultures of Anthoxanthum odoratum. Plant Cell Reports, 1981, 1(2): 80-82.
[11]  Grebe M. Plant biology: unveiling the Casparian strip. Nature, 2011, 473(7347): 294-295.
[12]  Alassimone J, Roppolo D, Geldner N, et al. The endodermis—development and differentiation of the plant’s inner skin. Protoplasma, 2011, DOI: 10.1007/s00709-011-0302-5.
[13]  Zeier J, Schreiber L. Chemical composition of hypodermal and endodermal cell walls and xylem vessels isolated from Clivia miniata. Plant Physiology, 1997, 113(4): 1223-1231.
[14]  Seregin I V, Ivanov V B. Histochemical investigation of cadmium and lead distribution in plants. Russian Journal of Plant Physiology, 1997, 44(6): 791-796.
[15]  Cataldo D A, Garland T R, Wildung R E. Cadmium uptake kinetics in intact soybean plants. Plant Physiology, 1983, 73(3): 844-848.
[16]  McCully M. How do real roots work? Some new views of root structure. Plant Physiology, 1995, 109(1): 1-6.
[17]  Saathoff A J, Ahner B, Spanswick R M, et al. Detection of phytochelatin in the xylem sap of Brassica napus. Environmental Engineering Science, 2011, 28(2): 103-111.
[18]  Senden M, Vand der Meer A, Verburg T G, et al. Effects of cadmium on the behaviour of citric acid in isolated tomato xylem cell walls. Journal of Experimental Botany, 1994, 45(5): 597-606.
[19]  Salt D E, Prince R C, Pickering I J, et al. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiology, 1995, 109(4): 1427-1433.
[20]  Wei Z, Wong J W, Hong F, et al. Determination of inorganic and organic anions in xylem saps of two contrasting oilseed rape (Brassica juncea L.) varieties: Roles of anions in long-distance transport of cadmium. Microchemical Journal, 2007, 86(1): 53-59.
[21]  Uraguchi S, Mori S, Kuramata M, et al. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany, 2009, 60(9): 2677-2688.
[22]  张永志, 赵首萍, 徐明飞, 等. 不同蒸腾作用对番茄幼苗吸收 Pb、Cd 的影响. 生态环境学报, 2009, 18(2): 515-518.
[23]  Küpper H, Lombi E, Zhao F J, et al. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta, 2000, 212(1): 75-84.
[24]  Salt D E, Prince R C, Pickering I J, et al. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiology, 1995, 109(4): 1427-1433.
[25]  王芳, 杨勇, 张燕, 等. 不同蔬菜对镉的吸收累积及亚细胞分布. 农业环境科学学报, 2009, 28(1): 44-48.
[26]  王华丙, 张振义, 包锐, 等. ABC转运蛋白的结构与转运机制. 生命的化学, 2007, 27(3): 208-210.
[27]  Kim D-Y, Bovet L, Kushnir S, et al. AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiology, 2006, 140(3): 922-932.
[28]  Bhuiyan M S U, Min S R, Jeong W J, et al. Overexpression of AtATM3 in Brassica juncea confers enhanced heavy metal tolerance and accumulation. Plant Cell Tissue and Organ Culture, 2011, 107(1): 69-77.
[29]  Conte S S, Walker E L. Transporters contributing to iron trafficking in plants. Molecular Plant, 2011, 4(3): 464-476.
[30]  Wycisk K, Kim E J, Schroeder J I, et al. Enhancing the first enzymatic step in the histidine biosynthesis pathway increases the free histidine pool and nickel tolerance in Arabidopsis thaliana. FEBS Letters, 2004, 578(1-2): 128-134.
[31]  Lee M, Lee K, Lee J, et al. AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiology, 2005, 138(2): 827-836.
[32]  Ann M. Ospdr9, which encodes a PDR-type ABC transporter, is induced by heavy metals, hypoxic stress and redox perturbations in rice roots. FEBS Letters, 2003, 553(3): 370-376.
[33]  Klein M, Burla B, Martinoia E. The multidrug resistance-associated protein (MRP/ABCC) subfamily of ATP-binding cassette transporters in plants. FEBS Letters, 2006, 580(4): 1112-1122.
[34]  Schneider T, Schellenberg M, Meyer S, et al. Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants. Proteomics, 2009, 9(10): 2668-2677.
[35]  Gaillard S, Jacquet H, Vavasseur A, et al. AtMRP6/AtABCC6, an ATP-binding cassette transporter gene expressed during early steps of seedling development and up-regulated by cadmium in Arabidopsis thaliana. BMC Plant Biology, 2008, 8: 1-11.
[36]  Wojas S, Hennig J, Plaza S, et al. Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root-to-shoot transport and accumulation. Environmental Pollution, 2009, 157(10): 2781-2789.
[37]  Bovet L, Eggmann T, Meylan-Bettex M, et al. Transcript levels of AtMRPs after cadmium treatment: induction of AtMRP3. Plant, Cell & Environment, 2003, 26(3): 371-381.
[38]  Tommasini R, Vogt E, Fromenteau M, et al. An ABC-transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity. The Plant Journal, 2002, 13(6): 773-780.
[39]  Lee S, Kim Y Y, Lee Y, et al. Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiology, 2007, 145(3): 831-842.
[40]  谭万能, 李志安, 邹碧. 植物对重金属耐性的分子机理. 植物生态学报, 2006, 30(4): 703-712.
[41]  Banci L, Bertini I, Ciofi-Baffoni S, et al. Structural basis for metal binding specificity: the N-terminal cadmium binding domain of the P1-type ATPase CadA. Journal of Molecular Biology, 2006, 356(3): 638-650.
[42]  Liu J, Dutta S J, Stemmler A J, et al. Metal-binding affinity of the transmembrane site in ZntA: Implications for metal selectivity. Biochemistry, 2006, 45(3): 763-772.
[43]  Lee J, Bae H, Jeong J, et al. Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals. Plant Physiology, 2003, 133: 589-596.
[44]  Gravot A, Lieutaud A, Verret F, et al. AtHMA3, a plant P-1B-ATPase, functions as a Cd/Pb transporter in yeast. FEBS Letters, 2004, 561: 22-28.
[45]  Morel M, Crouzet J, Gravot A, et al. AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiology, 2009, 149(2): 894-904.
[46]  Ueno D, Yamaji N, Kono I, et al. Gene limiting cadmium accumulation in rice. Proceedings of the National Academy of Sciences, 2010, 107(38): 16500-16505.
[47]  Mills R F, Francini A, Ferreira da Rocha PSC, et al. The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Letters, 2005, 579(3): 783-791.
[48]  Wong C K E, Cobbett C S. HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytologist, 2009, 181(1): 71-78.
[49]  Verret F, Gravot A, Auroy P, et al. Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Letters, 2004, 576(3): 306-312.
[50]  Hanikenne M, Talke I N, Haydon M J, et al. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature, 2008, 453(7193): 391-395.
[51]  Guimaraes M A, Gustin J L, Salt D E. Reciprocal grafting separates the roles of the root and shoot in zinc hyperaccumulation in Thlaspi caerulescens. New Phytologist, 2009, 184(2): 323-329.
[52]  Papoyan A, Kochian L V. Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiology, 2004, 136(3): 3814-3823.
[53]  Lee S, Kim Y Y, Lee Y, et al. Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiology, 2007, 145(3): 831-842.
[54]  Hirschi K D, Korenkov V D, Wilganowski N L, et al. Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiology, 2000, 124(1): 125-133.
[55]  Koren’kov V, Park S, Cheng N H, et al. Enhanced Cd2+-selective root-tonoplast-transport in tobaccos expressing Arabidopsis cation exchangers. Planta, 2007, 225(2): 403-411.
[56]  Cheng N, Pittman J K, Shigaki T, et al. Characterization of CAX4, an Arabidopsis H+/cation antiporter. Plant Physiology, 2002, 128(4): 1245-1254.
[57]  Berezin I, Mizrachy-Dagry T, Brook E, et al. Overexpression of AtMHX in tobacco causes increased sensitivity to Mg2+, Zn2+, and Cd2+ ions, induction of V-ATPase expression, and a reduction in plant size. Plant Cell Reports, 2008, 27(5): 939-949.
[58]  Korshunova Y O, Eide D, Gregg Clark W, et al. The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Molecular Biology, 1999, 40(1): 37-44.
[59]  Kramer U, Talke I N, Hanikenne M. Transition metal transport. FEBS Letters, 2007, 581(12): 2263-2272.
[60]  Arazi T, Sunkar R, Kaplan B, et al. A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. The Plant Journal, 1999, 20(2): 171-182.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133