全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2013 

羊草苗期对盐碱胁迫的生长适应及Na+、K+代谢响应

, PP. 201-209

Keywords: 羊草,盐胁迫,碱胁迫,生长适应,离子代谢

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过盆栽实验,混合2种中性盐(NaCl∶Na2SO4=9∶1)和2种碱性盐(NaHCO3∶Na2CO3=9∶1)分别模拟不同强度的盐碱条件,处理35d的羊草幼苗,研究2种胁迫对羊草各营养器官生长和盐离子分布的影响及其适应机制。结果表明,随着盐和碱胁迫浓度的增加,羊草营养器官生物量、克隆生长性状(根茎子株、分蘖子株等)、光合作用、K+含量等均显著降低,Na+含量和Na+/K+均显著增加。在高胁迫强度下(200mmol/L)碱胁迫引起的各项指标增减均显著高于盐胁迫。在2种胁迫下,根茎生物量的降低幅度最大,根茎子株的降低量高于分蘖子株。在盐胁迫和低浓度碱胁迫下,根和根茎内Na+、K+含量和Na+/K+的增减均高于茎叶,在高浓度碱胁迫下(200mmol/L)茎和叶内Na+含量显著增加。这表明在相同强度胁迫下,尤其在高浓度胁迫下,羊草耐盐而不耐碱,在盐胁迫和低浓度的碱胁迫下,羊草具有相似的生长适应策略及Na+、K+代谢响应,主要表现在减少向根茎的能量输出及子株产生,维持羊草的原位生长策略,同时将Na+向根茎和根区划,避免茎叶生长受损。但在高碱胁迫下,pH造成的胁迫超出羊草根与根茎的承载力,使其失去拦截Na+的功能而导致大量Na+涌入茎叶,进而影响其光合作用,使其生长严重受损。无论在生长适应或者Na+、K+代谢中,根茎的存在均起到一定的保护作用,缓解了盐碱胁迫对其他器官生长的伤害。

References

[1]  赵可夫,范海. 盐生植物及其对盐渍生境的适应生理. 北京: 科学出版社, 2004.
[2]  石德成,殷立娟. 盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异. 植物学报, 1993, 35: 144-149.
[3]  杨春武,李长有,张美丽,等. 盐、碱胁迫下小冰麦体内的pH及离子平衡. 应用生态学报, 2008, 19(5): 1000-1005.
[4]  秦峰梅,张红香,武祎,等.盐胁迫对黄花苜蓿发芽及幼苗生长的影响. 草业学报,2010,19(4): 71-78.
[5]  景艳霞,袁庆华. NaCl胁迫对苜蓿幼苗生长及不同器官中盐离子分布的影响.草业学报, 2011, 20(2): 134-139.
[6]  邹丽娜,周志宇,颜淑云,等.盐分胁迫对紫穗槐幼苗生理生化特性的影响.草业学报, 2011, 20(3): 84-90. 浏览
[7]  Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681.
[8]  Blumwald E. Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology, 2000, 12: 431-434.
[9]  Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants. Crop Science, 2005, 45: 437-448.
[10]  Flowers T J, Hajibagheri M A, Clipson N J W. Halophytes. Quarterly Review of Biology, 1986, 61: 31-37.
[11]  Song J, Feng G, Tian C Y, et al. Osmotic adjustment traits of Suaeda physophora, Haloxylon ammodendron and Haloxylon persicum in field or controlled conditions. Plant Science, 2006, 170: 113-119.
[12]  Ashraf M, Bashir A. Salt stress induced changes in some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance. Flora, 2003, 198: 486-498.
[13]  李博. 中国的草原. 北京: 科学出版社, 1990.
[14]  祝廷成. 羊草生物生态学. 吉林: 吉林科学技术出版社, 2004.
[15]  Jin H, Plaha P, Park J Y, et al. Comparative EST profiles of leaf and root of Leymus chinensis, a xerophilous grass adapted to high pH sodic soil. Plant Science, 2006, 175: 784-792.
[16]  黄泽豪,朱锦懋,母锡金,等. 羊草有性繁殖力低的成因研究进展. 中国草地学报, 2002, 24: 55-60.
[17]  杨允菲,刘庚长,张宝田.羊草种群年龄结构及无性繁殖对策的分析. 植物学报, 1995, 37(2): 147-153.
[18]  刘公社,齐冬梅. 羊草生物学研究进展. 草业学报, 2004, 13: 6-11.
[19]  李迠东. 我国的羊草草原. 东北师范大学学报(自然科学版), 1978, 1: 145-159.
[20]  Jin H, Kim H R, Plaha P, et al. Expression profiling of the genes induced by Na2CO3 and NaCl stresses in leaves and roots of Leymus chinensis. Plant Science, 2008, 175: 784-792.
[21]  周婵,杨允菲. 松嫩平原两个生态型羊草实验种群对盐碱胁迫的生理响应. 应用生态学报, 2003, 14(11): 1842-1846.
[22]  石德成,殷立娟. Na2CO3胁迫下羊草苗的胁变反应及其数学分析. 植物学报, 1992, 34(3): 386-393.
[23]  石德成,盛艳敏,赵可夫.不同盐浓度的混合盐对羊草苗的胁迫效应. 植物学报, 1998,40(12): 1136-1142.
[24]  Sun Y L, Hong S K. Effects of plant growth regulators and L-glutamic acid on shoot organogenesis in the halophyte Leymus chinensis (Trin.). Plant Cell Tissue and Organ Culture, 2010, 100: 317-328.
[25]  Ding X M, Yang Y F. Variations of water-soluble carbohydrate contents in different age class modules of Leymus chinensis populations in sandy and saline-alkaline soil on the Songnen Plains of China. Journal of Integrative Plant Biology, 2007, 49(5): 576-581.
[26]  Yang C W, Shi D C, Wang D L. Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.). Plant Growth Regulation, 2008, 56(2): 179-190.
[27]  刘文辉,周青平,颜红波,等.青海扁茎早熟禾种群地上生物量积累动态. 草业学报,2009,18(2): 18-24. 浏览
[28]  王洪义,王正文,李凌浩,等. 不同生境中克隆植物的繁殖倾向. 生态学杂志, 2005, 24(6): 670-676.
[29]  Li R, Shi F, Fukuda K. Interactive effects of various salt and alkali stresses on growth, organic solutes, and cation accumulation in a halophyte Spartina alterniflora (Poaceae). Environmental and Experimental Botany, 2010, 68(1): 66-74.
[30]  Yang C W, Jianaer A, Li C Y, et al. Comparison of the effects of salt-stress and alkali-stress on photosynthesis and energy storage of an alkali-resistant halophyte Chloris virgata. Photosynthetica, 2008, 46(2): 273-278.
[31]  Yang C W, Wang P, Li C Y, et al. Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat. Photosynthetica, 2008, 46(1): 107-114.
[32]  Taiz L, Zeiger E. Plant Physiology (3rd Edit). Sunderland: Sinauer Ass, 2002.
[33]  Flexas J, Bota J, Escalona J M, et al. Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Functional Plant Biology, 2002, 29: 461-471.
[34]  El-hafid R, Smith D H, Karrou M, et al. Physiological attributes associated with early-season drought resistance in spring durum wheat cultivars. Canadian Journal of Plant Science, 1998, 78: 227-237.
[35]  Clark H, Newton P C D, Barker D J. Physiological and morphological responses to elevated CO2 and a soil moisture deficit of temperate pasture species growing in an established plant community. Journal of Experimental Botany, 1999, 50: 233-242.
[36]  Li X Y, Liu J J, Zhang Y T, et al. Physiological responses and adaptive strategies of wheat seedlings to salt and alkali stresses. Soil Science and Plant Nutrition, 2009, 55: 680-684.
[37]  Yang C W, Xu H H, Wang L L, et al. Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica, 2009, 47: 79-86.
[38]  Greenway H, Munns R. Interactions between growth, uptake of Cl and Na, and water relations of plants in saline environments. Plant Cell and Environment, 1983, 6: 575-589.
[39]  Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 2002, 47: 39-50.
[40]  Benlloch-Gonzalez M, Fournier J M, Famos J, et al. Strategies underlying salt tolerance in halophytes are present in Cynara cardunculus. Plant Science, 2005, 168: 653-659.
[41]  Silveira J A G, Araujo S A M, Lima J P M, et al. Roots and leaves display contrasting osmotic adjustment mechanisms in responses to NaCl-salinity in Atriplex nummularia. Environmental and Experimental Botany, 2009, 66(1): 1-8.
[42]  Parida A K, Das A B. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 2005, 60: 324-349.
[43]  Zhu J K. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 2003, 6: 441-445.
[44]  Marschner H. Mineral Nutrition of Higher Plants (sencond ed). London: Academic Press, 1995.
[45]  Davenport R J, Reid R J, Smith F A. Sodium-calcium interactions in two wheat species differing in salinity tolerance. Physiologia Plantarum, 1997, 99: 323-327.
[46]  Wenxue W, Bilsborrow P E, Hooley P, et al. Salinity induced differences in growth, ion distribution and partioniong in barley between the cultivar Maythorpe and its derived mutant Golden Promise. Plant and Soil, 2003, 250: 183-191.
[47]  Shi D C, Wang D L. Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag. Plant and Soil, 2005, 271: 15-26.
[48]  杨春武,李长有,张美丽,等.碱胁迫下小冰麦体内的pH及离子平衡.应用生态学报, 2008, 19(5): 1000-1005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133