Jannink J L, Walsh B. Association mapping in plant populations[A]. In: Kang M S. Quantitative Genetics, Genomics and Plant Breeding[M]. New York, NY, USA: CAB International, 2002: 59-68.
[2]
Nordborg M, Weigel D. Next-generation genetics in plants[J]. Nature, 2008, 456: 720-723.
[3]
Julier B. A program to test linkage disequilibrium between loci in autotetraploid species[J]. Molecular Ecology Resources, 2009, 9: 746-748.
[4]
Sakiroglu M, Sherman-Broyles S, Story A. Patterns of linkage diequilibium and association mapping in diploid alfalfa (M. sativa L.)[J]. Theoretical and Applied Genetics, 2012, 125(3): 577-590.
[5]
Herrmann D, Barre P, Santoni S. Association of a CONSTANS-LIKE gene to flowering and height in autotetraploid alfalfa[J]. Theoretical and Applied Genetics, 2010, 121: 865-876.
[6]
Goddard M E, Hayes B J. Genomic selection[J]. Journal of Animal Breeding and Genetics, 2007, 124: 323-330.
[7]
Jannink J L, Lorenz A J, Iwata H. Genomic selection in plant breeding: from theory to practice[J]. Briefings in Functional Genomics, 2010, 9: 166-177.
[8]
Lorenz A J, Chao S, Asoro F G. Genomic selection in plant breeding: Knowledge and prospects[J]. Advances in Agronomy, 2011, 110: 77-123.
[9]
Reference:
[10]
Sumberg J E, Murphy R P, Lowe C C. Selection for fiber and protein concent ration in a diverse alfalfa population[J]. Crop Science, 1983, 23: 11214.
[11]
Michaud R, Lehman W F, Rumbaugh M D. World distribution and historical development[A]. In: Hanson, Barnes D K, Hill Jr. Alfalfa and Alfalfa Improvement, Agronomy Monograph No. 29[M]. Madison American Society of Agronomy, 1988: 25291.
[12]
Brummer E C, Kochert G, Bouton J H. RFLP variation in diploid and tetraploid alfalfa[J].Theoretical and Applied Genetics, 1991, 83: 89-96.
[13]
Brummer E C, Bouton J H, Kochert G. Development of an RFLP map in diploid alfalfa[J]. Theoretical and Applied Genetics, 1993, 86: 329-332.
[14]
Botstein D, White R L, Skolnick M. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1990, 32(3): 314-331.
[15]
Diwan N, Bouton J H, Kochert G. Mapping of simple sequence repeat (SSR) DNA markers in diploid and tetraploid alfalfa[J]. Theoretical and Applied Genetics, 2000, 101: 165-172.
[16]
Jiang J, Yang B L, Xia T et al. Analysis of genetic diversity of salt tolerant alfalfa germplasms[J]. Acta Prataculturae Sinica, 2011, 20(5): 119-125.
[17]
Kiss B G, Csandadi G, Kalmam K. Construction of basic genetic map for alfalfa using RFLP, RAPD, isozyme and morphological markers[J]. Molecular & General Genetics, 1993, 238: 129-137.
[18]
Echt C S, Kidwell K K, Knapp S J. Linkage mapping in diploid alfalfa (Medicago sativa L.)[J]. Genome, 1994, 37: 61-71.
[19]
Mengoni A, Gori A, Bazzigalupo M. Use of RAPD and microsatellite (SSR) to assess genetic relationships among populations of tetraploid alfalfa, Medicago sativa[J]. Plant Breeding, 2000, 193: 311-317.
[20]
Liu S N, Yu L Q, Zhou Y L et al. The construction of genetic linkage frame map in tetraploid Medicago using RAPD markers[J]. Acta Prataculturae Sinica, 2012, 21(1): 170-175.
[21]
Kalp Endre L, Zimnyi G. Construction of an improved linkage map of diploid alfalfa (Medicago sativa)[J]. Theoretical and Applied Genetics, 2000, 100: 641-657.
[22]
Yu K F, Pauls K P. Rapid estimation of genetic relatedness among heterogeneous populations of alfalfa by random amplification of bulked genomic DNA samples[J]. Theoretical and Applied Genetics, 1993, 86: 788-794.
[23]
Brouwer D J, Osborn T C. A molecular marker linkage map of tetraploid alfalfa (Medicago sativa L.)[J]. Theoretical and Applied Genetics, 1999, 99: 1194-1200.
[24]
Sledge M K, Ray I M, Jiang G. An expressed sequence tag SSR map of tetraploid alfalfa (Medicago sativa L.)[J]. Theoretical and Applied Genetics, 2005, 111: 980-992.
[25]
Hackett C A, Pande B, Bryan G J. Constructing linkage maps in autotetraploid species using simulated annealing[J]. Theoretical and Applied Genetics, 2003, 106: 1107-1115.
[26]
Julier B, Flajoulot S, Barre P. Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers[J]. BMC Plant Biology, 2003, 3: 1-19.
[27]
Han Y, Kang Y, Torres-Jerez I. Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis[J]. BMC Genomics, 2011, 12: 350.
[28]
Han Y, Khu D M, Monteros M J. High-resolution melting analysis for SNP genotyping and mapping in tetraploid alfalfa (Medicago sativa L.)[J]. Molecular Breeding, 2012, 29: 489-501.
[29]
Han Y, Ray I M, Sledge M K. Drought tolerance in tetraploid alfalfa[A]. Multifunctional grasslands in a changing world, Volume II: XXI International Grassland Congress and VIII International Rangeland Congress[C]. Hohhot, China, 2008: 419.
[30]
Khu D M, Reyno R, Han Y. Identification of aluminum tolerance QTLs in tetraploid alfalfa[J]. Crop Science, 2012, 53: 148-163.
[31]
Gou J, Han Y, Li X. SNP identification in genes associated with lignin content and forage composition in alfalfa[C]. Plant & Animal Genomes XVII Conference, 2011: 10-14.
[32]
Li X, Wei Y, Moore K J. Association mapping of biomass yield and stem composition in a tetraploid alfalfa breeding population[J]. Plant Genome, 2011, 4: 24-35.
[33]
Zhang Y, Sledge M K, Bouton J H. Genome mapping of white clover (Trifolium repens L.) and comparative analysis within the Trifolieae using cross-species SSR markers[J].Theoretical and Applied Genetics, 2007, 114: 1367-1378.
[34]
Sakiroglu M, Doyle J J, Brummer E C. Inferring population structure and genetic diversity of broad range of wild diploid alfalfa (Medicago sativa L.) accessions using SSR markers[J]. Theoretical and Applied Genetics, 2010, 121: 403-415.
[35]
Robins J G, Luth D, Campbell I A. Genetic mapping of biomass production in tetraploid alfalfa[J]. Crop Science, 2007, 47: 1-10.
[36]
Li X, Wang X, Brummer E C. Prevalence of segregation distortion in diploid alfalfa and its implications for genetics and breeding applications[J]. Theoretical and Applied Genetics, 2011, 123: 667-679.
[37]
Narasimhamoorthy B, Bouton J H, Olsen K M. Quantitative trait loci and candidate gene mapping of aluminum tolerance in diploid alfalfa[J]. Theoretical and Applied Genetics, 2007, 114: 901-913.
[38]
Pupilli F, Businelli S, Paolocci F. Extent of RFLP variability in tetraploid populations of alfalfa (Medicago sativa)[J]. Plant Breeding, 1996, 115: 106-112.
[39]
Li X H, Brummer E C. Inbreeding depression for fertility and biomass in advanced generations of inter- and intra-subspecific hybrids of tetraploid alfalfa[J]. Crop Science, 2009, 49: 13-19.
[40]
Robins J G, Bauchan G R, Brummer E C. Genetic mapping forage yield, plant height, and regrowth at multiple harvests in tetraploid alfalfa (Medicago sativa L.)[J]. Crop Science, 2007, 47: 11-18.
[41]
Brouwer D J, Duke S H, Osborn T C. Mapping genetic factors associated with winter hardiness, fail growth, and freezing injury in autotetraploid alfalfa[J]. Crop Science, 2000, 40: 1387-1396.
[42]
Alarcon Zuniga B, Scott P, Brummer E C. Quantitative trait locus mapping of winter hardiness metabolites in autotetraploid alfalfa (M. sativa)[A]. In: Hopkins A. Molecular Breeding of Forage and Turf[M]. Kluwer: Dordrecht, the Netherlands, 2004: 97-104.
[43]
Robins J G, Hansen J L, Viands D R. Genetic mapping of persistence in tetraploid alfalfa[J]. Crop Science, 2008, 48: 1780-1786.
[44]
Jiang G G, Song L L, Guo D L et al. Genome-wide association mapping of aluminum tolerance in Medicago truncatula[J]. Acta Prataculturae Sinica, 2013, 22(4): 170-178.
[45]
Julier B, Bernard K, Gibelin C. QTL for water use efficiency in alfalfa[A]. In: Huyghe C. Sustainable Use of Genetic Diversity in Forage and Turf Breeding[M]. Berlin, Germany: Springer, 2010: 433-436.
[46]
Beavis W D. QTL analyses: power, precision, and accuracy[A]. In: Paterson A. Molecular Dissection of Complex Traits[M].New York, NY, USA: CGC Press, 1998: 145-162.
[47]
Xu S. Theoretical basis of the Beavis effect[J]. Genetics, 2003, 165: 2259-2268.
[48]
Li X, Acharya A, Farmer A D, et al. Prevalence of single nucleotide polymorphism among 27 diverse alfalfa genotypes as assessed by transcriptome sequencing[J]. BMC Genomics, 2012, 13: 568.
[49]
Musial J M, Mackie J M, Armour D J. Identification of QTL for resistance and susceptibility to Stagonospora meliloti in autotetraploid lucerne[J]. Theoretical and Applied Genetics, 2007, 114: 1427-1435.
[50]
Endre G, Kalo P, Kevei Z. Genetic mapping of the non-nodulation phenotype of the mutant MN-1008 in tetraploid alfalfa (Medicago sativa)[J]. Molecular Genetics and Genomics, 2002, 266: 1012-1019.
[51]
Endre G, Kereszt A, Kevei Z. A receptor kinase gene regulating symbiotic nodule development[J]. Nature, 2002, 417: 962-966.
[52]
Yang S, Gao M, Xu C. Alfalfa benefits from Medicago truncatula: the RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa[J]. Proceedings of the National Academy of Sciences, USA, 2008, 105: 12164-12169.
[53]
Kamphuis L, Lichtenzveig J, Oliver R. Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in Medicago truncatula[J]. BMC Plant Biology, 2008, 8(30): 1-12.
[54]
Moreau D, Burstin J, Aubert G. Using a physiological framework for improving the detection of quantitative trait loci related to nitrogen nutrition in Medicago truncatula[J]. Theoretical and Applied Genetics, 2012, 124: 755-768.
[55]
Young N D, Debellé F, Oldroyd G E D. The Medicago genome provides insight into the evolution of rhizobial symbioses[J]. Nature, 2011, 480: 520-524.
[56]
Pierre J B, Huguet T, Barre P. Detection of QTLs for flowering date in three mapping populations of the model legume species Medicago truncatula[J]. Theoretical and Applied Genetics, 2008, 117: 609-620.
[57]
Julier B, Huguet T, Chardon F. Identification of quantitative trait loci influencing aerial morphogenesis in the model legume Medicago truncatula[J]. Theoretical and Applied Genetics, 2007, 114: 1391-1406.
[58]
Choi H K, Kim D, Uhm T. A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa[J]. Genetics, 2004, 166: 1463-1502.
[59]
Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics, 1989, 121: 185-199.
[60]
Kalo P, Seres A, Taylor S A. Comparative mapping between Medicago sativa and Pisum sativum[J]. Molecular Genetics and Genomics, 2004, 272: 235-246.
[61]
Wei Y L, Acharya A, Li X H. Application of Genotyping-by-sequencing (GBS) in alfalfa, the North American Alfalfa Improvement(NAAIC), Trifolium, & Grass Breeders[C]. New York, NY, USA: July 8-10, 2012:10-12.
[62]
参考文献:
[63]
Sumberg J E, Murphy R P, Lowe C C. Selection for fiber and protein concent ration in a diverse alfalfa population[J]. Crop Science, 1983, 23: 11214.
[64]
Michaud R, Lehman W F, Rumbaugh M D. World distribution and historical development[A]. In: Hanson, Barnes D K, Hill Jr. Alfalfa and Alfalfa Improvement, Agronomy Monograph No. 29[M]. Madison American Society of Agronomy, 1988: 25291.
[65]
Brummer E C, Kochert G, Bouton J H. RFLP variation in diploid and tetraploid alfalfa[J].Theoretical and Applied Genetics, 1991, 83: 89-96.
[66]
Brummer E C, Bouton J H, Kochert G. Development of an RFLP map in diploid alfalfa[J]. Theoretical and Applied Genetics, 1993, 86: 329-332.
[67]
Botstein D, White R L, Skolnick M. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1990, 32(3): 314-331.
[68]
Diwan N, Bouton J H, Kochert G. Mapping of simple sequence repeat (SSR) DNA markers in diploid and tetraploid alfalfa[J]. Theoretical and Applied Genetics, 2000, 101: 165-172.
[69]
Robins J G, Bauchan G R, Brummer E C. Genetic mapping forage yield, plant height, and regrowth at multiple harvests in tetraploid alfalfa (Medicago sativa L.)[J]. Crop Science, 2007, 47: 11-18.
[70]
Brouwer D J, Duke S H, Osborn T C. Mapping genetic factors associated with winter hardiness, fail growth, and freezing injury in autotetraploid alfalfa[J]. Crop Science, 2000, 40: 1387-1396.
[71]
Alarcon Zuniga B, Scott P, Brummer E C. Quantitative trait locus mapping of winter hardiness metabolites in autotetraploid alfalfa (M. sativa)[A]. In: Hopkins A. Molecular Breeding of Forage and Turf[M]. Kluwer: Dordrecht, the Netherlands, 2004: 97-104.
[72]
Robins J G, Hansen J L, Viands D R. Genetic mapping of persistence in tetraploid alfalfa[J]. Crop Science, 2008, 48: 1780-1786.
Julier B, Bernard K, Gibelin C. QTL for water use efficiency in alfalfa[A]. In: Huyghe C. Sustainable Use of Genetic Diversity in Forage and Turf Breeding[M]. Berlin, Germany: Springer, 2010: 433-436.
[75]
Beavis W D. QTL analyses: power, precision, and accuracy[A]. In: Paterson A. Molecular Dissection of Complex Traits[M].New York, NY, USA: CGC Press, 1998: 145-162.
[76]
Xu S. Theoretical basis of the Beavis effect[J]. Genetics, 2003, 165: 2259-2268.
[77]
Li X, Acharya A, Farmer A D,et al. Prevalence of single nucleotide polymorphism among 27 diverse alfalfa genotypes as assessed by transcriptome sequencing[J]. BMC Genomics, 2012, 13: 568.
[78]
Musial J M, Mackie J M, Armour D J. Identification of QTL for resistance and susceptibility to Stagonospora meliloti in autotetraploid lucerne[J]. Theoretical and Applied Genetics, 2007, 114: 1427-1435.
[79]
Endre G, Kalo P, Kevei Z. Genetic mapping of the non-nodulation phenotype of the mutant MN-1008 in tetraploid alfalfa (Medicago sativa)[J]. Molecular Genetics and Genomics, 2002, 266: 1012-1019.
[80]
Endre G, Kereszt A, Kevei Z. A receptor kinase gene regulating symbiotic nodule development[J]. Nature, 2002, 417: 962-966.
[81]
Yang S, Gao M, Xu C. Alfalfa benefits from Medicago truncatula: the RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa[J]. Proceedings of the National Academy of Sciences, USA, 2008, 105: 12164-12169.
[82]
Kamphuis L, Lichtenzveig J, Oliver R. Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in Medicago truncatula[J]. BMC Plant Biology, 2008, 8(30): 1-12.
[83]
Moreau D, Burstin J, Aubert G. Using a physiological framework for improving the detection of quantitative trait loci related to nitrogen nutrition in Medicago truncatula[J]. Theoretical and Applied Genetics, 2012, 124: 755-768.
[84]
Young N D, Debellé F, Oldroyd G E D. The Medicago genome provides insight into the evolution of rhizobial symbioses[J]. Nature, 2011, 480: 520-524.
[85]
Pierre J B, Huguet T, Barre P. Detection of QTLs for flowering date in three mapping populations of the model legume species Medicago truncatula[J]. Theoretical and Applied Genetics, 2008, 117: 609-620.
[86]
Julier B, Huguet T, Chardon F. Identification of quantitative trait loci influencing aerial morphogenesis in the model legume Medicago truncatula[J]. Theoretical and Applied Genetics, 2007, 114: 1391-1406.
[87]
Choi H K, Kim D, Uhm T. A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa[J]. Genetics, 2004, 166: 1463-1502.
[88]
Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics, 1989, 121: 185-199.
[89]
Kalo P, Seres A, Taylor S A. Comparative mapping between Medicago sativa and Pisum sativum[J]. Molecular Genetics and Genomics, 2004, 272: 235-246.
[90]
Wei Y L, Acharya A, Li X H. Application of Genotyping-by-sequencing (GBS) in alfalfa, the North American Alfalfa Improvement(NAAIC), Trifolium, & Grass Breeders[C]. New York, NY, USA: July 8-10, 2012:10-12.
[91]
Li X H,Brummer E C. Applied Genetics and Genomics in Alfalfa Breeding[J]. Agronomy, 2012, 2: 40-61.
[92]
Li X H,Brummer E C. Applied genetics and genomics in alfalfa breeding[J]. Agronomy, 2012, 2: 40-61.
[93]
Jannink J L, Walsh B. Association mapping in plant populations[A]. In: Kang M S. Quantitative Genetics, Genomics and Plant Breeding[M]. New York, NY, USA: CAB International, 2002: 59-68.
[94]
Nordborg M, Weigel D. Next-generation genetics in plants[J]. Nature, 2008, 456: 720-723.
[95]
Julier B. A program to test linkage disequilibrium between loci in autotetraploid species[J]. Molecular Ecology Resources, 2009, 9: 746-748.
[96]
Sakiroglu M, Sherman-Broyles S, Story A. Patterns of linkage diequilibium and association mapping in diploid alfalfa (M. sativa L.)[J]. Theoretical and Applied Genetics, 2012, 125(3): 577-590.
[97]
Herrmann D, Barre P, Santoni S. Association of a CONSTANS-LIKE gene to flowering and height in autotetraploid alfalfa[J]. Theoretical and Applied Genetics, 2010, 121: 865-876.
[98]
Goddard M E, Hayes B J. Genomic selection[J]. Journal of Animal Breeding and Genetics, 2007, 124: 323-330.
[99]
Jannink J L, Lorenz A J, Iwata H. Genomic selection in plant breeding: from theory to practice[J]. Briefings in Functional Genomics, 2010, 9: 166-177.
[100]
Lorenz A J, Chao S, Asoro F G. Genomic selection in plant breeding: Knowledge and prospects[J]. Advances in Agronomy, 2011, 110: 77-123.
[101]
Jannink J L. Dynamics of long-term genomic selection[J]. Genetics Selection Evolution, 2010, 42:1-35.
[102]
Heffner E L, Lorenz A J, Jannink J L. Plant breeding with genomic selection:gain per unit time and cost[J]. Crop Science, 2010, 50: 1681-1690.
[103]
Huang X, Wei X, Sang T, et al. Genome-wide association studies of 14 agronomic traits in rice landraces[J]. Nature Genetics, 2010, 42: 961-967.
[104]
Heffner E L, Sorrells M E, Jannink J L. Genomic selection for crop improvement[J]. Crop Science, 2009, 49: 1-12.
[105]
Elshire R J, Glaubitz J C, Sun Q. Simple genotyping-by-sequencing (GBS) approach for high diversity species[J]. PLOS One, 2011, 6: 1-10.
Kiss B G, Csandadi G, Kalmam K. Construction of basic genetic map for alfalfa using RFLP, RAPD, isozyme and morphological markers[J]. Molecular & General Genetics, 1993, 238: 129-137.
[108]
Echt C S, Kidwell K K, Knapp S J. Linkage mapping in diploid alfalfa (Medicago sativa L.)[J]. Genome, 1994, 37: 61-71.
[109]
Mengoni A, Gori A, Bazzigalupo M. Use of RAPD and microsatellite (SSR) to assess genetic relationships among populations of tetraploid alfalfa, Medicago sativa[J]. Plant Breeding, 2000, 193: 311-317.
Kalp Endre L, Zimnyi G. Construction of an improved linkage map of diploid alfalfa (Medicago sativa)[J]. Theoretical and Applied Genetics, 2000, 100: 641-657.
[112]
Yu K F, Pauls K P. Rapid estimation of genetic relatedness among heterogeneous populations of alfalfa by random amplification of bulked genomic DNA samples[J]. Theoretical and Applied Genetics, 1993, 86: 788-794.
[113]
Brouwer D J, Osborn T C. A molecular marker linkage map of tetraploid alfalfa (Medicago sativa L.)[J]. Theoretical and Applied Genetics, 1999, 99: 1194-1200.
[114]
Sledge M K, Ray I M, Jiang G. An expressed sequence tag SSR map of tetraploid alfalfa (Medicago sativa L.)[J]. Theoretical and Applied Genetics, 2005, 111: 980-992.
[115]
Hackett C A, Pande B, Bryan G J. Constructing linkage maps in autotetraploid species using simulated annealing[J]. Theoretical and Applied Genetics, 2003, 106: 1107-1115.
[116]
Julier B, Flajoulot S, Barre P. Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers[J]. BMC Plant Biology, 2003, 3: 1-19.
[117]
Han Y, Kang Y, Torres-Jerez I. Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis[J]. BMC Genomics, 2011, 12: 350.
[118]
Han Y, Khu D M, Monteros M J. High-resolution melting analysis for SNP genotyping and mapping in tetraploid alfalfa (Medicago sativa L.)[J]. Molecular Breeding, 2012, 29: 489-501.
[119]
Han Y, Ray I M, Sledge M K. Drought tolerance in tetraploid alfalfa[A]. Multifunctional grasslands in a changing world, Volume II: XXI International Grassland Congress and VIII International Rangeland Congress[C]. Hohhot, China, 2008: 419.
[120]
Khu D M, Reyno R, Han Y. Identification of aluminum tolerance QTLs in tetraploid alfalfa[J]. Crop Science, 2012, 53: 148-163.
[121]
Gou J, Han Y, Li X. SNP identification in genes associated with lignin content and forage composition in alfalfa[C]. Plant & Animal Genomes XVII Conference, 2011: 10-14.
[122]
Li X, Wei Y, Moore K J. Association mapping of biomass yield and stem composition in a tetraploid alfalfa breeding population[J]. Plant Genome, 2011, 4: 24-35.
[123]
Zhang Y, Sledge M K, Bouton J H. Genome mapping of white clover (Trifolium repens L.) and comparative analysis within the Trifolieae using cross-species SSR markers[J].Theoretical and Applied Genetics, 2007, 114: 1367-1378.
[124]
Sakiroglu M, Doyle J J, Brummer E C. Inferring population structure and genetic diversity of broad range of wild diploid alfalfa (Medicago sativa L.) accessions using SSR markers[J]. Theoretical and Applied Genetics, 2010, 121: 403-415.
[125]
Robins J G, Luth D, Campbell I A. Genetic mapping of biomass production in tetraploid alfalfa[J]. Crop Science, 2007, 47: 1-10.
[126]
Li X, Wang X, Brummer E C. Prevalence of segregation distortion in diploid alfalfa and its implications for genetics and breeding applications[J]. Theoretical and Applied Genetics, 2011, 123: 667-679.
[127]
Narasimhamoorthy B, Bouton J H, Olsen K M. Quantitative trait loci and candidate gene mapping of aluminum tolerance in diploid alfalfa[J]. Theoretical and Applied Genetics, 2007, 114: 901-913.
[128]
Pupilli F, Businelli S, Paolocci F. Extent of RFLP variability in tetraploid populations of alfalfa (Medicago sativa)[J]. Plant Breeding, 1996, 115: 106-112.
[129]
Li X H, Brummer E C. Inbreeding depression for fertility and biomass in advanced generations of inter- and intra-subspecific hybrids of tetraploid alfalfa[J]. Crop Science, 2009, 49: 13-19.
[130]
Jannink J L. Dynamics of long-term genomic selection[J]. Genetics Selection Evolution, 2010, 42:1-35.
[131]
Heffner E L, Lorenz A J, Jannink J L. Plant breeding with genomic selection:gain per unit time and cost[J]. Crop Science, 2010, 50: 1681-1690.
[132]
Huang X, Wei X, Sang T,et al. Genome-wide association studies of 14 agronomic traits in rice landraces[J]. Nature Genetics, 2010, 42: 961-967.
[133]
Heffner E L, Sorrells M E, Jannink J L. Genomic selection for crop improvement[J]. Crop Science, 2009, 49: 1-12.
[134]
Elshire R J, Glaubitz J C, Sun Q. Simple genotyping-by-sequencing (GBS) approach for high diversity species[J]. PLOS One, 2011, 6: 1-10.