Adesemoye A O, Torbert H A, Kloepper J W. Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system[J]. Canadian Journal of Microbiology, 2008, 54(10): 876-886.
[3]
Oliveira C A, Alves V M C, Marriel I E. Phosphate-solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome[J]. Soil Biology and Biochemistry, 2009, 41(9): 1782-1787.
[4]
Chen Z X, Ma S W, Liu L. Studies on phosphorus solubilizing activity of a strain of phosphor bacteria isolated from chestnut type soil in China[J]. Bioresource Technology, 2008, 99(14): 6702-6707.
[5]
Hafeez F Y, Yasmin S, Ariani D, et al. Plant growth-promotingbacteria as biofertilizer[J]. Agronomy for Sustainable Development, 2006, 26: 143-150.
[6]
Suneja P, Dudeja S S, Narula N. Development of multiple coinoculants of different biofertilizers and their interaction with plants[J]. Archives of Agronomy and Soil Science, 2007, 53(2): 221-230.
[7]
Chen Z Z, Zhou S S. 333 / A spring vetch Breeding and Popularization[M]. Lanzhou: Gansu Ethnic Publishing House, 1991.
[8]
Wang D, Ren J Z. Pasture science monographs[M]. Nanjing: Jiangsu Science and Technology Publishing House, 1989.
[9]
Li Q. Alpine pastoral Arrow peas and oats mixed experiment[J]. China grassland and forage, 1984, 1(1): 38-41.
[10]
Zhao Q. Northern low-yielding green manure crop cultivation and use of soil practical[M]. Tianjin: Tianjin Science and Technology Translation and Publishing Corporation, 2010.
[11]
Zeng X C, Wang W M, Luo M N, et al. Effects of different element deficiencies on soybean growth and root morphology[J]. Plant Nutrition and Fertilizer Science, 2010, 16(4): 1032-1036.
[12]
Wang S Q, Han X Z, Yan J, et al. Impact of phosphorus deficiency stress on root morphology, nitrogen concentration and phosphorus accumulation of soybean[J]. Chinese Journal of Soil Science, 2010, 41(3): 644-649.
[13]
Ding H, Zhang Z M, Dai L X, et al. Responses of root morphology of peanut varieties differing in drought tolerance to water-deficient stress[J]. Acta Ecologica Sinica, 2013, 33(17): 5169-5176.
[14]
Liu S, Li T X, Ji L, et al. Phosphorus accumulation and root morphological difference of two ecotypes of Pilea sinofasciata grown in different phosphorus treatments[J]. Acta Prataculturae Sinica, 2013, 22(3): 211-217.
[15]
Hafeez F Y, Malik K A.Manual on Biofertilizer Technology[M]. Pakistan: NIBGE, 2000.
[16]
Malik K A, Bilal R. Survival and Colonization of Inoculated Bacteria in Kallar Grass Rhizosphere and Quantification of N2-Fixation[A]. In: Nitrogen Fixation with Nonlegumes[C]. Skinner F A, Bodderand R M, Fendrik I, (Eds). The Netherlands: Kluwer Academic Publishers, 1989: 301-310.
[17]
Yao T, Zhang D G, Hu Z Z. Associative nitrogen-fixing bacteria in the rhizosphere of Avena sativa in an alpine region Ⅰ Isolation and identification[J]. Acta Prataculturae Sinica, 2004, 13(2): 106-111.
[18]
Yao T. Associative nitrogen-fixing bacteria in the rhizosphere of Avena sativa in an alpine region ⅡPhosphate-solubilizing power and auxin production[J]. Acta Prataculturae Sinica, 2004, 13(3): 85-90.
[19]
Ren D M, Zhang X X, Dong D, et al. Studies on taxonomy and microbiostatic activity of antagonistic strain Kc-t99[J]. Biotechnology Bulletin, 2011, 4(4): 153-157.
[20]
Whiting S N, Neumann P M, Baker J M. Applying a solute transfer model to phytoextraction; Zinc acquisition by Thaspi caerulescens[J]. Plant Soil, 2003, 249: 45-56.
[21]
Hamdali H, Ouhdouch Y. Rock phosphate solubilizing Actinomycetes Screening for plant growth-promoting activities[J]. World Journal of Microbiology and Biotechnology, 2008, 24: 2565-2575.
[22]
Mirz M S, Rasul G, Mehnaz S. Beneficial effects of inoculated nitrogen-fixing bacteria on rice[J]. Biology and Fertility of Soils, 2000, 31: 191-204.
[23]
Oliveira A M, Urquiaga S, Dobereiner J, et al. The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants[J]. Plant Soil, 2002, 242: 205-215.
[24]
Hu J C, Xue D L, Ma C X. Research advances in plant growth-promoting rhizobacteria and its application prospects[J]. Chinese Journal of Applied Ecology, 2004, 15(10): 1963-1966.
[25]
Kang Y J, Shen M, Wang H L, et al. Effects of two plant growth-promoting rhizobacteria(PGPR) on yardlong bean early seedlings growth and indigenous soil bacterial community[J]. Journal of Agro-Environment Science, 2012, 31(8): 1537-1543.
[26]
Liu J L, Fang F, Shi X H, et al. Isolation and characterization of PGPR from the rhizosphere of the Avena sativa in saline-alkali soil[J]. Acta Prataculturae Sinica, 2013, 22(2): 132-139.
[27]
Yao T, Pu X P, Zhang D G, et al. Associative nitrogen-fixing bacteria in the rhizosphere of Avena sativa in an alpine region Ⅲ Effect on Avena sativa growth and quantification of nitrogen fixed[J]. Acta Prataculturae Sinica, 2004, 13(5): 101-105.
[28]
Zhang Y, Zhu Y, Yao T, et al. Interactions of four PGPRs isolated from pasture rhizosphere[J]. Acta Prataculturae Sinica, 2013, 22(1): 29-37.
[29]
Han H W, Sun L N, Yao T, et al. Effects of bio-fertilizers with different PGPR strain combinations on yield and quality of alfalfa[J]. Acta Prataculturae Sinica, 2013, 22(5): 104-112.
[30]
Wang N, Qin Y. Effects of AM fungus on root morphology of host plant bidens pilosa L.[J]. Journal of Anhui Agricultural Sciences, 2012, 40(1): 13-14.
[31]
Feng L, Zhang L H, Tian X S. Effect of pseudomonas flurosecens on rhizosphere microorganisms and root activity of tobacco[J]. Journal of Agro-Environment Science, 2007, 26(Supplement): 537-539.
[32]
Bonser A, Lynchj P, Snapp S. Effect of Phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris[J]. New Phytologist, 1996, 132: 281-288.
[33]
Zhao H, Xu F S, Shi L. Advances in plant root morphology adaptability to phosphorus deficiency stress[J]. Chinese Bulletin of Botany, 2006, 23(4): 409-417.
[34]
参考文献:
[35]
Adesemoye A O, Torbert H A, Kloepper J W. Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system[J]. Canadian Journal of Microbiology, 2008, 54(10): 876-886.
[36]
Oliveira C A, Alves V M C, Marriel I E. Phosphate-solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome[J]. Soil Biology and Biochemistry, 2009, 41(9): 1782-1787.
[37]
Chen Z X, Ma S W, Liu L. Studies on phosphorus solubilizing activity of a strain of phosphor-bacteria isolated from chestnut type soil in China[J]. Bioresource Technology, 2008, 99(14): 6702-6707.
[38]
Hafeez F Y, Yasmin S, Ariani D, et al. Plant growth-promotingbacteria as biofertilizer[J]. Agronomy for Sustainable Development, 2006, 26: 143-150.
[39]
Suneja P, Dudeja S S, Narula N. Development of multiple co-inoculants of different biofertilizers and their interaction with plants[J]. Archives of Agronomy and Soil Science, 2007, 53(2): 221-230.
Hafeez F Y, Malik K A.Manual on Biofertilizer Technology[M]. Pakistan: NIBGE, 2000.
[49]
Malik K A, Bilal R. Survival and Colonization of Inoculated Bacteria in Kallar Grass Rhizosphere and Quantification of N2-Fixation[A]. In: Nitrogen Fixation with Nonlegumes[C]. Skinner F A, Bodderand R M, Fendrik I, (Eds). The Netherlands: Kluwer Academic Publishers, 1989: 301-310.
Whiting S N, Neumann P M, Baker J M. Applying a solute transfer model to phytoextraction; Zinc acquisition by Thaspi caerulescens[J]. Plant Soil, 2003, 249: 45-56.
[54]
Hamdali H, Ouhdouch Y. Rock phosphate-solubilizing Actinomycetes Screening for plant growth-promoting activities[J]. World Journal of Microbiology and Biotechnology, 2008, 24: 2565-2575.
[55]
Mirz M S, Rasul G, Mehnaz S. Beneficial effects of inoculated nitrogen-fixing bacteria on rice[J]. Biology and Fertility of Soils, 2000, 31: 191-204.
[56]
Oliveira A M, Urquiaga S, Dobereiner J, et al. The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants[J]. Plant Soil, 2002, 242: 205-215.
Bonser A, Lynchj P, Snapp S. Effect of Phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris[J]. New Phytologist, 1996, 132: 281-288.