全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2014 

黄花草木樨水浸提液中潜在化感物质的分离、鉴定

DOI: 10.11686/cyxb20140521, PP. 184-192

Keywords: 黄花草木樨,色谱分离,GC-MS,化感物质,香豆素

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究旨在分离、鉴定黄花草木樨水浸提液中的主要化感物质。采用色谱分离、薄层分析和生物活性检测相结合的方法分离出了活性较强的化感物质组分,并通过气质联用(GC-MS)对潜在的化感物质进行了定性分析。结果表明,黄花草木樨水浸提液的乙酸乙酯相中含有多种化感物质,相对含量最高的为香豆素,相对含量较高的有6-(3-Hydroxy-but-1-enyl)-1,5,5-trimethyl-7-oxabicyclo[4,1,0]heptan-2-ol、二氢苯并吡喃酮、2,6-二叔丁基对甲酚、二溴三甲基环丙烷、磷酸三甲酯等物质;将乙酸乙酯相进一步分离得到3层混合物,上层混合物中含量相对最高的为香豆素;中层混合物中含量相对较高的有二溴三甲基环丙烷、6-(3-Hydroxy-but-1-enyl)-1,5,5-trimethy-7-oxabicyclo[4,1,0]heptan-2-ol、2,6-二叔丁基对甲酚、甲基环戊醇等物质;下层混合物中含量相对较高的有二溴三甲基环丙烷、甲基环戊醇、环己基溴化膦等物质。乙酸乙酯相及其分离后的各层混合物处理对多花黑麦草种子萌发和幼苗生长均具有一定的化感作用,其中,乙酸乙酯相处理对多花黑麦草化感抑制作用最强,其处理对多花黑麦草种子萌发和幼苗生长的抑制作用显著强于其分层后的各层混合物处理(P<0.05);其次是上层混合物处理,其处理对多花黑麦草种子萌发和幼苗生长的抑制作用显著强于其他2层(P<0.05);下层混合物处理对多花黑麦草的种子萌发和幼苗生长则具有明显的促进作用(P>0.05)。以上结果提示,黄花草木樨水浸提液中化感物质种类非常多,香豆素的含量最高,且香豆素含量高的组分处理对黑麦草的抑制作用就强,推测香豆素应为黄花草木樨水浸提液中的主要化感物质之一。

References

[1]  Reference:
[2]  Schlegel A J, Havlin J L. Green fallow for the central Great Plains[J]. Agronomy Journal, 1997, 89(5): 762-767.
[3]  Sparrow S D, Cochran V L, Sparrow E B. Herbage yield and nitrogen accumulation by seven legume crops on acid and neutral soils in a subarctic environment[J]. Canadian Journal of Plant Science, 1993, 73(4): 1037-1045.
[4]  Smith W, Gorz H. Sweetclover improvement[J]. Advances in Agronomy, 1965, 17: 163-231.
[5]  Nicotra M, Meli R, Savoca F. Efficacy of Melilotus officinalis (L.) pallas in cellulitis treatment[J]. Bollettino Accademia Gioenia Scienze Naturali, 2009, 42: 20-28.
[6]  Wu C X, Guo X X, Li Z H, et al. Feasibility of using the allelopathic potential of yellow sweet clover for weed control[J]. Allelopathy Journal, 2010, 25(1): 173-183.
[7]  Moyer J, Blackshaw R, Huang H. Effect of sweetclover cultivars and management practices on following weed infestations and wheat yield[J]. Canadian Journal of Plant Science, 2007, 87(4): 973-983.
[8]  Blackshaw R E, Moyer J R, Doram R C, et al. Yellow sweetclover, green manure, and its residues effectively suppress weeds during fallow[J]. Weed Science, 2001, 49(3): 406-413. Sampietro D A, Catalan C A, Vattuone M A. Isolation, Identification and Characterization of Allelochemicals/Natural Products[M]. Boca Raton: Science Publishers, 2009.
[9]  Kelton J, Price A J, Mosjidis J. Allelopathic weed suppression through the use of cover crops[J]. Weed Control, 2012, 2: 978-953.
[10]  Stoker J, Bellis D. The isolation and identification of bound coumarin from Melilotus album[J]. Canadian Journal of Biochemistry and Physiology, 1962, 40(12): 1763-1768.
[11]  Kang S S, Lee Y S, Lee E B. Saponins and flavonoid glycosides from yellow sweetclover[J]. Archives of Pharmacal Research, 1988, 11(3): 197-202.
[12]  Macías F A, Simonet A M, Galindo J C. Bioactive steroids and triterpenes from Melilotus messanensis and their allelopathic potential[J]. Journal of Chemical Ecology, 1998, 23(7): 1781-1803.
[13]  Macías F A, Simonet A M, Galindo J C, et al. Bioactive phenolics and polar compounds from Melilotus messanensis[J]. Phytochemistry, 1999, 50(1): 35-46.
[14]  Wu C X, Li Z H, Shen Y X. Quantification and allelopathy potential of phenolic acids in aqueous extracts of Legumes[J]. Acta Agrestia Sinica, 2007, 15(5): 401-406.
[15]  Takemura T, Kamo T, Sakuno E, et al. Discovery of coumarin as the predominant allelochemical in Gliricidia sepium[J]. Journal of Tropical Forest Science, 2013, 25(2): 268-272. Bertin C, Paul R N, Duke S O, et al. Laboratory assessment of the allelopathic effects of fine leaf fescues[J]. Journal of Chemical Ecology, 2003, 29(8): 1919-1937.
[16]  Chung I M, Kim K H, Ahn J K, et al. Comparison of allelopathic potential of rice leaves, straw, and hull extracts on barnyardgrass[J]. Agronomy Journal, 2003, 95(4): 1063-1070.
[17]  Kato-Noguchi H, Yamamoto M, Tamura K, et al. Isolation and identification of potent allelopathic substances in rattail fescue[J]. Plant Growth Regulation, 2010, 60(2): 127-131.
[18]  Bich T, Ohno O, Suenaga K, et al. Isolation and identification of an allelopathic substance from duckweed (Lemna minor L.)[J]. Allelopathy Journal, 2013, 32(2): 213-221.
[19]  Salam A, Kato Noguchi H. Isolation and characterisation of two potent growth inhibitory substances from aqueous extract of Bangladeshi rice cultivar BR17[J]. Allelopathy Journal, 2011, 27(2): 207-216.
[20]  Yang G Q. Main allelochemicals isolated and identified from the leachates of Ageratina adenophora Sprengel(Asteraceae) and their action mechanisms on upland rice(Oryza sativa) seedling[D]. Beijing: Chinese Academy of Agricultural Sciences, 2006.
[21]  Eljarrat E, Barceló D. Sample handling and analysis of allelochemical compounds in plants[J]. TrAC Trends in Analytical Chemistry, 2001, 20(10): 584-590.
[22]  El Shahawy T A, Abdelhamid M T. Potential allelopathic effect of six phaseolus vulgaris recombinant inbred lines for weed control[J]. Australian Journal of Basic&Applied Sciences, 2013, 7(1): 462-467. 
[23]  Razavi S M. Plant coumarins as allelopathic agents[J]. International Journal of Biological Chemistry, 2011, 5: 86-90.
[24]  Sharma R, Negi D S, Shiu W K, et al. Characterization of an insecticidal coumarin from Boenninghausenia albiflora[J]. Phytotherapy Research, 2006, 20(7): 607-609.
[25]  Brooker N, Kuzimichev Y, Laas J, et al. Evaluation of coumarin derivatives as anti-fungal agents against soil borne fungal pathogens[J]. Communications in Agricultural and Applied Biological Sciences, 2006, 72(4): 785-793.
[26]  Ascari J, Takahashi J A, Boaventura M A D. Phytochemical and biological investigations of Caryocar brasiliense Camb[J]. Boletín Latinoamericanoy del Caribe de Plantas Medicinalesy Aromáticas, 2010, 9(1): 20-28.
[27]  Hong Y, Hu H, Sakoda A, et al. Straw preservation effects of Arundo donax L. on its allelopathic activity to toxic and bloom-forming Microcystis aeruginosa[J]. Water Science & Technology, 2011, 63(8): 1566-1573.
[28]  Qiao M, Xiao J, Yin H, et al. Analysis of the phenolic compounds in root exudates produced by a subalpine coniferous species as responses to experimental warming and nitrogen fertilisation[J]. Chemistry and Ecology, 2014, 30(6): 1-11.
[29]  参考文献:
[30]  Schlegel A J, Havlin J L. Green fallow for the central Great Plains[J]. Agronomy Journal, 1997, 89(5): 762-767.
[31]  Sparrow S D, Cochran V L, Sparrow E B. Herbage yield and nitrogen accumulation by seven legume crops on acid and neutral soils in a subarctic environment[J]. Canadian Journal of Plant Science, 1993, 73(4): 1037-1045.
[32]  Smith W, Gorz H. Sweetclover improvement[J]. Advances in Agronomy, 1965, 17: 163-231.
[33]  Nicotra M, Meli R, Savoca F. Efficacy of Melilotus officinalis (L.) pallas in cellulitis treatment[J]. Bollettino Accademia Gioenia Scienze Naturali, 2009, 42: 20-28.
[34]  Wu C X, Guo X X, Li Z H, et al. Feasibility of using the allelopathic potential of yellow sweet clover for weed control[J]. Allelopathy Journal, 2010, 25(1): 173-183.
[35]  Moyer J, Blackshaw R, Huang H. Effect of sweetclover cultivars and management practices on following weed infestations and wheat yield[J]. Canadian Journal of Plant Science, 2007, 87(4): 973-983.
[36]  Blackshaw R E, Moyer J R, Doram R C, et al. Yellow sweetclover, green manure, and its residues effectively suppress weeds during fallow[J]. Weed Science, 2001, 49(3): 406-413.
[37]  Sampietro D A, Catalan C A, Vattuone M A. Isolation, Identification and Characterization of Allelochemicals/Natural Products[M]. Boca Raton: Science Publishers, 2009.
[38]  Kelton J, Price A J, Mosjidis J. Allelopathic weed suppression through the use of cover crops[J]. Weed Control, 2012, 2: 978-953.
[39]  Stoker J, Bellis D. The isolation and identification of bound coumarin from Melilotus album[J]. Canadian Journal of Biochemistry and Physiology, 1962, 40(12): 1763-1768.
[40]  Kang S S, Lee Y S, Lee E B. Saponins and flavonoid glycosides from yellow sweetclover[J]. Archives of Pharmacal Research, 1988, 11(3): 197-202.
[41]  Macías F A, Simonet A M, Galindo J C. Bioactive steroids and triterpenes from Melilotus messanensis and their allelopathic potential[J]. Journal of Chemical Ecology, 1998, 23(7): 1781-1803.
[42]  Macías F A, Simonet A M, Galindo J C, et al. Bioactive phenolics and polar compounds from Melilotus messanensis[J]. Phytochemistry, 1999, 50(1): 35-46.
[43]  邬彩霞, 李志华, 沈益新. 豆科牧草水浸提液的酚酸物质含量及化感潜力[J]. 草地学报, 2007, 15(5): 401-406.
[44]  Takemura T, Kamo T, Sakuno E, et al. Discovery of coumarin as the predominant allelochemical in Gliricidia sepium[J]. Journal of Tropical Forest Science, 2013, 25(2): 268-272.
[45]  Bertin C, Paul R N, Duke S O, et al. Laboratory assessment of the allelopathic effects of fine leaf fescues[J]. Journal of Chemical Ecology, 2003, 29(8): 1919-1937.
[46]  Chung I M, Kim K H, Ahn J K, et al. Comparison of allelopathic potential of rice leaves, straw, and hull extracts on barnyardgrass[J]. Agronomy Journal, 2003, 95(4): 1063-1070.
[47]  Kato-Noguchi H, Yamamoto M, Tamura K, et al. Isolation and identification of potent allelopathic substances in rattail fescue[J]. Plant Growth Regulation, 2010, 60(2): 127-131. Bich T, Ohno O, Suenaga K, et al. Isolation and identification of an allelopathic substance from duckweed (Lemna minor L.)[J]. Allelopathy Journal, 2013, 32(2): 213-221.
[48]  Salam A, Kato-Noguchi H. Isolation and characterisation of two potent growth inhibitory substances from aqueous extract of Bangladeshi rice cultivar BR17[J]. Allelopathy Journal, 2011, 27(2): 207-216.
[49]  杨国庆. 紫茎泽兰淋溶主效化感物质的分离鉴定及其对旱稻幼苗的作用机理[D]. 北京: 中国农业科学院, 2006.
[50]  Eljarrat E, Barceló D. Sample handling and analysis of allelochemical compounds in plants[J]. TrAC Trends in Analytical Chemistry, 2001, 20(10): 584-590.
[51]  El-Shahawy T A, Abdelhamid M T. Potential allelopathic effect of six phaseolus vulgaris recombinant inbred lines for weed control[J]. Australian Journal of Basic&Applied Sciences, 2013, 7(1): 462-467. 
[52]  Razavi S M. Plant coumarins as allelopathic agents[J]. International Journal of Biological Chemistry, 2011, 5: 86-90.
[53]  Sharma R, Negi D S, Shiu W K, et al. Characterization of an insecticidal coumarin from Boenninghausenia albiflora[J]. Phytotherapy Research, 2006, 20(7): 607-609.
[54]  Brooker N, Kuzimichev Y, Laas J, et al. Evaluation of coumarin derivatives as anti-fungal agents against soil-borne fungal pathogens[J]. Communications in Agricultural and Applied Biological Sciences, 2006, 72(4): 785-793.
[55]  Ascari J, Takahashi J A, Boaventura M A D. Phytochemical and biological investigations of Caryocar brasiliense Camb[J]. Boletín Latinoamericanoy del Caribe de Plantas Medicinalesy Aromáticas, 2010, 9(1): 20-28.
[56]  Hong Y, Hu H, Sakoda A, et al. Straw preservation effects of Arundo donax L. on its allelopathic activity to toxic and bloom-forming Microcystis aeruginosa[J]. Water Science & Technology, 2011, 63(8): 1566-1573.
[57]  Qiao M, Xiao J, Yin H, et al. Analysis of the phenolic compounds in root exudates produced by a subalpine coniferous species as responses to experimental warming and nitrogen fertilisation[J]. Chemistry and Ecology, 2014, 30(6): 1-11.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133