Dilly O, Munch J C. Microbial biomass content, basal respiration and enzyme activities during the course of decomposition of leaf litter in a Black Alder (Alnusglutinosa (L.) Gaertn.) forest[J]. Soil Biology and Biochemistry, 1996, 28(8): 1073-1081.
[2]
Melin E. Biological decomposition of some types of litter from North American forests[J]. Ecology, 1930, 11: 72-101.
Hodge A, Robinson D, Fitter A H. An arbuscular mycorrhizal inoculum enhances root proliferation in, but not nitrogen capture from, nutrient-rich patches in soil[J]. New Phytologist, 2000, 145: 575-584.
[5]
Talbot J M, Allison S D, Treseder K K. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change[J]. Functional Ecology, 2008, 22: 955-963.
[6]
Hodge A, Campbell C, Fitter A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquisition nitrogen directly from organic material[J]. Nature, 2001, 413: 297-299.
[7]
Smith S E, Read D J. Mycorrhizal Symbiosis (3rd ed.)[M]. London: Academic Press, 2008.
[8]
Andrew T N, Benjamin L T, Klaus W, et al. Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest[J]. FEMS Microbiol Ecology, 2013, 85(1): 37-50.
[9]
Lerat S, Lapointe L, Gutjahr S, et al. Carbon portioning in a split-root system of arbuscular mycorrhizal plants is fungal and plant species dependent[J]. New Phytologist, 2003, 157(3): 589-595.
Olson J A. Energy storage and the balance of producers and decomposers in ecological systems[J]. Ecology, 1963, 44(2): 322-332.
[14]
Giovannett M, Mosse B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in root[J]. New Phytologist, 1980, 84: 489-500.
[15]
Abbott L K, Robson A D, Deboer G. The effect of phosphorus on the formation of hyphae in soil by the vesicular arbuscular mycorrhizal fungus, Glomus fasciculatum[J]. New Phytologist, 1984, 97: 437-446.
Leigh J, Hodge A, Fitter A H. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material[J]. New Phytologist, 2009, 181: 199-207.
[20]
Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling[J]. Proceedings of the National Academy of Sciences, 2010, 107(31): 13754-13759.
Cheng L, Booker F L, Tu C, et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2[J]. Science, 2012, 337: 1084-1087.
[23]
Tu C, Booker F L, Watson D M, et al. Mycorrhizal mediation of plant N acquisition and residue decomposition:impact of mineral N inputs[J]. Global Change Biology, 2006, 12: 793-803.
[24]
Singh B K, Nunan N, Ridgway K P, et al. Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots[J]. Environmental Microbiology, 2008, 10: 534-541.
[25]
Yao X H, Hang M, Lü Z H, et al. Influence of acetamiprid on soil enzymatic activities and respiration[J]. European Journal of Soil Biology, 2006, 42: 120-126.
[26]
Bonfante P, Anca I A. Plants, mycorrhizal fungi, and bacteria: A network of interactions[J]. Annual Review of Microbiology, 2009, 63: 363-383.
[27]
Barbara D, Agata S P, Henk D, et al. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2[J]. Proceedings of the National Academy of Sciences, 2010, 107(24): 10938-10942.
[28]
Bomberg M, Jurgens G, Saano A, et al. Nested PCR detection of Archaea in defined compartments of pine mycorrhizospheres developed in boreal forest humus microcosms[J]. FEMS Microbiology Ecologist, 2003, 43(2): 163-171.
Anderson T H, Domsch K H. Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories[J]. Soil Biology and Biochemistry, 1990, 22: 251-255.
[31]
Reference:
[32]
Lecerf A, Marie G, Kominoski J S, et al. Incubation time, functional litter diversity, and habitat characteristics predict litter-mixing effects on decomposition[J]. Ecology, 2011, 92(1): 160-169.
[33]
Zhao H L, Liu R T, Zhou R L, et al. Properties and mechanisms of change of soil macro-fauna communities in the desertification process of Horqin sandy grassland[J]. Acta Prataculturae Sinica, 2013, 22(3): 70-77.
[34]
Berg B, McClaugherty C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration (2nd Edition)[M]. Springer: Verlag Berlin Heidelberg, 2008.
[35]
Lin S S, Sun X W, Wang X J, et al. Mycorrhizal studies and their application prospects in China[J]. Acta Prataculturae Sinica, 2013, 22(5): 310-325.
[36]
Ye S P, Zeng X H, Xin G R, et al. Effects of arbuscular mycorrhizal fungi (AMF) on growth and regrowth of bermudagrass under different P supply levels[J]. Acta Prataculturae Sinica, 2013, 22(1): 46-52.
[37]
Talbot J M, Allison S D, Treseder K K. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change[J]. Functional Ecology, 2008, 22: 955-963.
[38]
Hodge A, Campbell C, Fitter A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquisition nitrogen directly from organic material[J]. Nature, 2001, 413: 297-299.
[39]
Smith S E, Read D J. Mycorrhizal Symbiosis (3rd ed.)[M]. London: Academic Press, 2008.
[40]
Andrew T N, Benjamin L T, Klaus W, et al. Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest[J]. FEMS Microbiol Ecology, 2013, 85(1): 37-50.
[41]
Lerat S, Lapointe L, Gutjahr S, et al. Carbon portioning in a split-root system of arbuscular mycorrhizal plants is fungal and plant species dependent[J]. New Phytologist, 2003, 157(3): 589-595.
[42]
Peng S L, Shen H, Zhang Y T, et al. Compare different effect of arbuscular mycorrhizal colonization on soil structure[J]. Acta Ecologica Sinica, 2012, 32(3): 863-870.
[43]
Bao S D. Agrochemical soil analysis (3rd Edition)[M]. Beijing: China Agriculture Press, 2000: 76-79.
[44]
Shen Y, Yang H L, He W M. Nutrient availability in habitats affects carbon and nitrogen releases of litter in winter wheat[J]. Chinese Journal of Plant Ecology, 2010, 34(5): 498-504. Olson J A. Energy storage and the balance of producers and decomposers in ecological systems[J]. Ecology, 1963, 44(2): 322-332.
[45]
Giovannett M, Mosse B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in root[J]. New Phytologist, 1980, 84: 489-500.
[46]
Abbott L K, Robson A D, Deboer G. The effect of phosphorus on the formation of hyphae in soil by the vesicular arbuscular mycorrhizal fungus, Glomus fasciculatum[J]. New Phytologist, 1984, 97: 437-446.
[47]
Guan S Y. Soil enzymes and Research Act[M]. Beijing: Agricultural Press, 1986: 260-353.
[48]
Hazi Y F. Soil enzyme activity[M]. Zheng H Y, Zhou L k, translate. Beijing: Science Press, 1980: 24-75.
[49]
Lu R K. Agricultural chemical analysis of the soil[M]. Beijing: China Agricultural Science and Technology Press, 1999: 231-233.
[50]
Leigh J, Hodge A, Fitter A H. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material[J]. New Phytologist, 2009, 181: 199-207.
[51]
Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling[J]. Proceedings of the National Academy of Sciences, 2010, 107(31): 13754-13759.
[52]
Luo Z, Wang X F, Zhu M, et al. Influences of mycorrhizal inoculation on maize straw degradation[J]. Journal of Soil and Water Conservation, 2012, 26(4): 267-270.
[53]
Cheng L, Booker F L, Tu C, et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2[J]. Science, 2012, 337: 1084-1087.
[54]
Tu C, Booker F L, Watson D M, et al. Mycorrhizal mediation of plant N acquisition and residue decomposition:impact of mineral N inputs[J]. Global Change Biology, 2006, 12: 793-803.
[55]
Singh B K, Nunan N, Ridgway K P, et al. Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots[J]. Environmental Microbiology, 2008, 10: 534-541.
[56]
Yao X H, Hang M, Lü Z H, et al. Influence of acetamiprid on soil enzymatic activities and respiration[J]. European Journal of Soil Biology, 2006, 42: 120-126.
[57]
Bonfante P, Anca I A. Plants, mycorrhizal fungi, and bacteria: A network of interactions[J]. Annual Review of Microbiology, 2009, 63: 363-383.
[58]
Barbara D, Agata S P, Henk D, et al. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2[J]. Proceedings of the National Academy of Sciences, 2010, 107(24): 10938-10942.
[59]
Bomberg M, Jurgens G, Saano A, et al. Nested PCR detection of Archaea in defined compartments of pine mycorrhizospheres developed in boreal forest humus microcosms[J]. FEMS Microbiology Ecologist, 2003, 43(2): 163-171.
[60]
Yu M, Bi Y L, Zhang C Q. Lasting improvement effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on rhizosphere soil environment in mining subsidence[J]. 2013, 29(8): 242-248.
[61]
Anderson T H, Domsch K H. Application of eco-physiological quotients ( q CO2 and q D) on microbial biomasses from soils of different cropping histories[J]. Soil Biology and Biochemistry, 1990, 22: 251-255.
[62]
Dilly O, Munch J C. Microbial biomass content, basal respiration and enzyme activities during the course of decomposition of leaf litter in a Black Alder (Alnusglutinosa (L.) Gaertn.) forest[J]. Soil Biology and Biochemistry, 1996, 28(8): 1073-1081.
[63]
Melin E. Biological decomposition of some types of litter from North American forests[J]. Ecology, 1930, 11: 72-101.
[64]
Cha T G, Zhang Z Q, Sun G, et al. Home-field advantage of litter decomposition and its soil biological driving mechanism: a review[J]. Acta Ecologica Sinica, 2012, 32(24): 7991-8000.
[65]
Hodge A, Robinson D, Fitter A H. An arbuscular mycorrhizal inoculum enhances root proliferation in, but not nitrogen capture from, nutrient rich patches in soil[J]. New Phytologist, 2000, 145: 575-584.
[66]
参考文献:
[67]
Lecerf A, Marie G, Kominoski J S, et al. Incubation time, functional litter diversity, and habitat characteristics predict litter-mixing effects on decomposition[J]. Ecology, 2011, 92(1): 160-169.