全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2014 

分根装置中丛枝菌根真菌影响蚕豆秸秆降解作用研究

DOI: 10.11686/cyxb20140531, PP. 263-270

Keywords: 分根装置,降解,土壤酶活性,土壤呼吸

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究丛枝菌根对植物凋落物降解的作用,采用四室分根装置即土壤室、根室、菌根室和菌丝室,分室间用37.4μm尼龙网和有机板分隔,尼龙网袋包埋蚕豆秸秆于不同分室内,以玉米为宿主植物,接种丛枝菌根真菌Glomusmosseae。试验分别在移栽后第20、30、40、50、60天时取样,通过比较不同分室内在降解过程中土壤中酸性磷酸酶、蛋白酶和过氧化氢酶活性的动态变化、微生物量碳和氮及土壤呼吸的动态变化。研究结果表明:经60d的培养后,与非根际土壤室(S)相比,根室(R)、菌根室(M)和菌丝室(H)蚕豆秸秆降解量分别提高了15.61%,20.54%和7.74%,降解系数分别提高了25.87%、35.00%和12.17%。M室中土壤酸性磷酸酶、蛋白酶、过氧化氢酶活性较其他三室都有显著提高,同时菌根室(M)和菌丝室的微生物量碳、氮与土壤呼吸作用也显著增加。因此,丛枝菌根真菌和宿主植物形成共生体系后,通过提高土壤酶活性、增加微生物量的大小和活性来作用于蚕豆秸秆的降解过程,成为造成玉米秸秆降解加快的重要原因,这也表明了丛枝菌根真菌土壤碳氮循环中的重要作用。

References

[1]  Dilly O, Munch J C. Microbial biomass content, basal respiration and enzyme activities during the course of decomposition of leaf litter in a Black Alder (Alnusglutinosa (L.) Gaertn.) forest[J]. Soil Biology and Biochemistry, 1996, 28(8): 1073-1081.
[2]  Melin E. Biological decomposition of some types of litter from North American forests[J]. Ecology, 1930, 11: 72-101.
[3]  査同刚, 张志强, 孙阁, 等. 凋落物分解主场效应及其土壤生物驱动[J]. 生态学报, 2012, 32(24): 7991-8000.
[4]  Hodge A, Robinson D, Fitter A H. An arbuscular mycorrhizal inoculum enhances root proliferation in, but not nitrogen capture from, nutrient-rich patches in soil[J]. New Phytologist, 2000, 145: 575-584.
[5]  Talbot J M, Allison S D, Treseder K K. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change[J]. Functional Ecology, 2008, 22: 955-963.
[6]  Hodge A, Campbell C, Fitter A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquisition nitrogen directly from organic material[J]. Nature, 2001, 413: 297-299.
[7]  Smith S E, Read D J. Mycorrhizal Symbiosis (3rd ed.)[M]. London: Academic Press, 2008.
[8]  Andrew T N, Benjamin L T, Klaus W, et al. Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest[J]. FEMS Microbiol Ecology, 2013, 85(1): 37-50. 
[9]  Lerat S, Lapointe L, Gutjahr S, et al. Carbon portioning in a split-root system of arbuscular mycorrhizal plants is fungal and plant species dependent[J]. New Phytologist, 2003, 157(3): 589-595.
[10]  彭思利, 申鸿, 张宇亭, 等. 不同丛枝菌根真菌侵染对土壤结构的影响[J]. 生态学报, 2012, 32(3): 863-870.
[11]  鲍士旦. 土壤农化分析(第3版)[M]. 北京: 中国农业出版社, 2000: 76-79.
[12]  申艳, 杨慧玲, 何维明. 冬小麦生境中土壤养分对凋落物碳氮释放的影响[J]. 植物生态学报, 2010, 34(5): 498-504.
[13]  Olson J A. Energy storage and the balance of producers and decomposers in ecological systems[J]. Ecology, 1963, 44(2): 322-332.
[14]  Giovannett M, Mosse B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in root[J]. New Phytologist, 1980, 84: 489-500.
[15]  Abbott L K, Robson A D, Deboer G. The effect of phosphorus on the formation of hyphae in soil by the vesicular arbuscular mycorrhizal fungus, Glomus fasciculatum[J]. New Phytologist, 1984, 97: 437-446.
[16]  关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986: 260-353.
[17]  哈兹耶夫. 土壤酶活性[M]. 郑洪元, 周礼恺, 译. 北京: 科学出版社, 1980: 24-75.
[18]  鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999: 231-233.
[19]  Leigh J, Hodge A, Fitter A H. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material[J]. New Phytologist, 2009, 181: 199-207.
[20]  Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling[J]. Proceedings of the National Academy of Sciences, 2010, 107(31): 13754-13759.
[21]  罗珍, 王晓峰, 朱敏, 等. 接种丛枝菌根真菌对玉米秸秆降解的影响[J]. 水土保持学报, 2012, 26(4): 267-270.
[22]  Cheng L, Booker F L, Tu C, et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2[J]. Science, 2012, 337: 1084-1087.
[23]  Tu C, Booker F L, Watson D M, et al. Mycorrhizal mediation of plant N acquisition and residue decomposition:impact of mineral N inputs[J]. Global Change Biology, 2006, 12: 793-803.
[24]  Singh B K, Nunan N, Ridgway K P, et al. Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots[J]. Environmental Microbiology, 2008, 10: 534-541.
[25]  Yao X H, Hang M, Lü Z H, et al. Influence of acetamiprid on soil enzymatic activities and respiration[J]. European Journal of Soil Biology, 2006, 42: 120-126.
[26]  Bonfante P, Anca I A. Plants, mycorrhizal fungi, and bacteria: A network of interactions[J]. Annual Review of Microbiology, 2009, 63: 363-383.
[27]  Barbara D, Agata S P, Henk D, et al. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2[J]. Proceedings of the National Academy of Sciences, 2010, 107(24): 10938-10942.
[28]  Bomberg M, Jurgens G, Saano A, et al. Nested PCR detection of Archaea in defined compartments of pine mycorrhizospheres developed in boreal forest humus microcosms[J]. FEMS Microbiology Ecologist, 2003, 43(2): 163-171.
[29]  于淼, 毕银丽, 张翠青. 菌根与根瘤菌联合应用对复垦矿区根际土壤环境的改良后效[J]. 农业工程学报, 2013, 29(8): 242-248.
[30]  Anderson T H, Domsch K H. Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories[J]. Soil Biology and Biochemistry, 1990, 22: 251-255.
[31]  Reference:
[32]  Lecerf A, Marie G, Kominoski J S, et al. Incubation time, functional litter diversity, and habitat characteristics predict litter-mixing effects on decomposition[J]. Ecology, 2011, 92(1): 160-169. 
[33]  Zhao H L, Liu R T, Zhou R L, et al. Properties and mechanisms of change of soil macro-fauna communities in the desertification process of Horqin sandy grassland[J]. Acta Prataculturae Sinica, 2013, 22(3): 70-77.
[34]  Berg B, McClaugherty C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration (2nd Edition)[M]. Springer: Verlag Berlin Heidelberg, 2008.
[35]  Lin S S, Sun X W, Wang X J, et al. Mycorrhizal studies and their application prospects in China[J]. Acta Prataculturae Sinica, 2013, 22(5): 310-325.
[36]  Ye S P, Zeng X H, Xin G R, et al. Effects of arbuscular mycorrhizal fungi (AMF) on growth and regrowth of bermudagrass under different P supply levels[J]. Acta Prataculturae Sinica, 2013, 22(1): 46-52.
[37]  Talbot J M, Allison S D, Treseder K K. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change[J]. Functional Ecology, 2008, 22: 955-963.
[38]  Hodge A, Campbell C, Fitter A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquisition nitrogen directly from organic material[J]. Nature, 2001, 413: 297-299.
[39]  Smith S E, Read D J. Mycorrhizal Symbiosis (3rd ed.)[M]. London: Academic Press, 2008.
[40]  Andrew T N, Benjamin L T, Klaus W, et al. Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest[J]. FEMS Microbiol Ecology, 2013, 85(1): 37-50. 
[41]  Lerat S, Lapointe L, Gutjahr S, et al. Carbon portioning in a split-root system of arbuscular mycorrhizal plants is fungal and plant species dependent[J]. New Phytologist, 2003, 157(3): 589-595.
[42]  Peng S L, Shen H, Zhang Y T, et al. Compare different effect of arbuscular mycorrhizal colonization on soil structure[J]. Acta Ecologica Sinica, 2012, 32(3): 863-870.
[43]  Bao S D. Agrochemical soil analysis (3rd Edition)[M]. Beijing: China Agriculture Press, 2000: 76-79.
[44]  Shen Y, Yang H L, He W M. Nutrient availability in habitats affects carbon and nitrogen releases of litter in winter wheat[J]. Chinese Journal of Plant Ecology, 2010, 34(5): 498-504. Olson J A. Energy storage and the balance of producers and decomposers in ecological systems[J]. Ecology, 1963, 44(2): 322-332.
[45]  Giovannett M, Mosse B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in root[J]. New Phytologist, 1980, 84: 489-500.
[46]  Abbott L K, Robson A D, Deboer G. The effect of phosphorus on the formation of hyphae in soil by the vesicular arbuscular mycorrhizal fungus, Glomus fasciculatum[J]. New Phytologist, 1984, 97: 437-446.
[47]  Guan S Y. Soil enzymes and Research Act[M]. Beijing: Agricultural Press, 1986: 260-353.
[48]  Hazi Y F. Soil enzyme activity[M]. Zheng H Y, Zhou L k, translate. Beijing: Science Press, 1980: 24-75.
[49]  Lu R K. Agricultural chemical analysis of the soil[M]. Beijing: China Agricultural Science and Technology Press, 1999: 231-233.
[50]  Leigh J, Hodge A, Fitter A H. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material[J]. New Phytologist, 2009, 181: 199-207.
[51]  Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling[J]. Proceedings of the National Academy of Sciences, 2010, 107(31): 13754-13759.
[52]  Luo Z, Wang X F, Zhu M, et al. Influences of mycorrhizal inoculation on maize straw degradation[J]. Journal of Soil and Water Conservation, 2012, 26(4): 267-270.
[53]  Cheng L, Booker F L, Tu C, et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2[J]. Science, 2012, 337: 1084-1087.
[54]  Tu C, Booker F L, Watson D M, et al. Mycorrhizal mediation of plant N acquisition and residue decomposition:impact of mineral N inputs[J]. Global Change Biology, 2006, 12: 793-803.
[55]  Singh B K, Nunan N, Ridgway K P, et al. Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots[J]. Environmental Microbiology, 2008, 10: 534-541.
[56]  Yao X H, Hang M, Lü Z H, et al. Influence of acetamiprid on soil enzymatic activities and respiration[J]. European Journal of Soil Biology, 2006, 42: 120-126.
[57]  Bonfante P, Anca I A. Plants, mycorrhizal fungi, and bacteria: A network of interactions[J]. Annual Review of Microbiology, 2009, 63: 363-383.
[58]  Barbara D, Agata S P, Henk D, et al. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2[J]. Proceedings of the National Academy of Sciences, 2010, 107(24): 10938-10942.
[59]  Bomberg M, Jurgens G, Saano A, et al. Nested PCR detection of Archaea in defined compartments of pine mycorrhizospheres developed in boreal forest humus microcosms[J]. FEMS Microbiology Ecologist, 2003, 43(2): 163-171.
[60]  Yu M, Bi Y L, Zhang C Q. Lasting improvement effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on rhizosphere soil environment in mining subsidence[J]. 2013, 29(8): 242-248.
[61]  Anderson T H, Domsch K H. Application of eco-physiological quotients ( q CO2 and q D) on microbial biomasses from soils of different cropping histories[J]. Soil Biology and Biochemistry, 1990, 22: 251-255.
[62]  Dilly O, Munch J C. Microbial biomass content, basal respiration and enzyme activities during the course of decomposition of leaf litter in a Black Alder (Alnusglutinosa (L.) Gaertn.) forest[J]. Soil Biology and Biochemistry, 1996, 28(8): 1073-1081.
[63]  Melin E. Biological decomposition of some types of litter from North American forests[J]. Ecology, 1930, 11: 72-101.
[64]  Cha T G, Zhang Z Q, Sun G, et al. Home-field advantage of litter decomposition and its soil biological driving mechanism: a review[J]. Acta Ecologica Sinica, 2012, 32(24): 7991-8000.
[65]  Hodge A, Robinson D, Fitter A H. An arbuscular mycorrhizal inoculum enhances root proliferation in, but not nitrogen capture from, nutrient rich patches in soil[J]. New Phytologist, 2000, 145: 575-584.
[66]  参考文献:
[67]  Lecerf A, Marie G, Kominoski J S, et al. Incubation time, functional litter diversity, and habitat characteristics predict litter-mixing effects on decomposition[J]. Ecology, 2011, 92(1): 160-169. 
[68]  赵哈林, 刘任涛, 周瑞莲, 等. 沙漠化对科尔沁沙质草地大型土壤动物群落的影响及其成因分析[J]. 草业学报, 2013, 22(3): 70-77.
[69]  Berg B, McClaugherty C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration (2nd Edition)[M]. Springer: Verlag Berlin Heidelberg, 2008.
[70]  林双双, 孙向伟, 王晓娟, 等. 我国菌根学研究进展及其应用展望[J]. 草业学报, 2013, 22(5): 310-325. 浏览
[71]  叶少萍, 曾秀华, 辛国荣, 等. 不同磷水平下丛枝菌根真菌(AMF)对狗牙根生长与再生的影响[J]. 草业学报, 2013, 22(1): 46-52. 浏览

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133