全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2014 

黄土丘陵沟壑区不同立地环境下植物的抗氧化特性

DOI: 10.11686/cyxb20140501, PP. 1-12

Keywords: 黄土丘陵沟壑区,立地环境,膜脂过氧化作用,抗氧化酶,非酶抗氧化物质

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过野外取样,对黄土丘陵沟壑区坡沟系统5种立地环境(阳坡沟谷地和沟间地、峁顶、阴坡沟间地和沟谷地)下19种主要物种叶片的膜脂过氧化指标丙二醛(MDA)含量,3种抗氧化酶即超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性,及2种非酶抗氧化物质即还原型谷胱甘肽(GSH)和类胡萝卜素(Car)含量进行了测定与分析,旨在探讨不同物种适应不同立地环境的抗氧化特性。结果表明:各立地环境下物种间的MDA积累量均呈极显著差异(P<0.01),说明各立地环境的胁迫均导致供试物种遭受不同程度的膜脂过氧化作用,其中互生叶醉鱼草的膜脂过氧化水平最高,猪毛蒿的最低;在不同立地环境间,白羊草、达乌里胡枝子、阿尔泰狗娃花和狼牙刺的各抗氧化酶活性和非酶抗氧化物质含量均无显著差异(P>0.05),中华隐子草、糙隐子草、长芒草、草木樨状黄芪、糙叶黄芪、甘草、菊叶委陵菜、猪毛蒿、铁杆蒿、茭蒿、沙棘、杠柳和互生叶醉鱼草存在显著(P<0.05)或极显著(P<0.01)差异,说明在不同立地环境下,前者均采用多种抗氧化酶和非酶抗氧化物质协同抵御胁迫的策略,后者则调用不同抗氧化酶或非酶抗氧化物质发挥主要抵御作用;由于植物科属和碳同化途径的差异,其抗氧化特性也存在差异:菊科和豆科植物分别主要通过CAT和SOD减轻活性氧的伤害,禾本科植物则能以较高的SOD、POD活性和Car含量维持较低的膜脂过氧化水平,C4植物比C3植物具有较高的GSH和Car含量。隶属函数法综合评价表明,中华隐子草的抗氧化能力最强,互生叶醉鱼草的最弱。

References

[1]  Reference:
[2]  Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55: 373-399.
[3]  Papadakis A K, Roubelakis-Angelakis K A. Polyamines inhibit NADPH oxidase-mediated superoxide generation and putrescine prevents programmed cell death induced by polyamine oxidase-generated hydrogen peroxide[J]. Planta, 2005, 220(6): 826-837. 
[4]  Zhang J P. Plant Physiology[M]. Beijing: Higher Education Press, 2006.
[5]  Li C Z, Zuo L P, Li Y, et al. Physiological responses in leaves of Reaumuria soongorica from different altitudes under osmotic stress[J]. Acta Prataculturae Sinica, 2013, 22(1): 176-182.
[6]  Shan C J, Han R L, Liang Z S. Antioxidant properties of four native grasses in Loess Plateau under drought stress[J]. Acta Ecologica Sinica, 2012, 32(4): 1174-1184.
[7]  Pei B, Zhang G C, Zhang S Y, et al. Effects of soil drought stress on photosynthetic characteristics and antioxidant enzyme activities in Hippophae rhamnoides Linn.seedings[J]. Acta Ecologica Sinica, 2013, 33(5): 1386-1396.
[8]  Gechev T, Willekens H, Van Montagu M, et al. Different responses of tobacco antioxidant enzymes to light and chilling stress[J]. Journal of Plant Physiology, 2003, 160(5): 509-515.
[9]  Carvalho L C. Solanum lycopersicon Mill. and Nicotiana benthamiana L. under high light show distinct responses to anti-oxidative stress[J]. Journal of Plant Physiology, 2008, 165: 1300-1312.
[10]  Li H E, He J J, Qin Y, et al. The characteristics of storms and floods in the Yanhe River Basin and the flood forecasting scheme[J]. Hydrology, 2005, 25(5): 37-41.
[11]  Chen Y M, Liang Y M, Cheng J M. The zonal character of vegetation construction on Loess Plateau[J]. Acta Phytoecologica Sinica, 2002, 26(3): 339-345.
[12]  Wang L, Shao M A, Hou Q C. Preliminary research on measured indexes of dried soil layer[J]. Journal of Soil and Water Conservation, 2000, 14(4): 87-90.
[13]  National Soil Survey Office. Second National Soil Survey Interim Technical Specification[M]. Beijing: Agricultural Press, 1979.
[14]  Cai Y L, Song Y C. Adaptive ecology of Lian as in Tiantong Evergreen Broad-Leaved Forest, Zhejiang , ChinaI. leaf an atomical characters[J]. Acta Phytoecologica Sinica, 2001, 25(1): 90-98.
[15]  Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their function[J]. Plant Physiology, 2006, 141: 391-396.
[16]  Wang H Z, Zhang J, Wu J Z, et al. Effect of different levels of nitrogen on physiological characteristics of flag leaves and grain yield of wheat[J]. Acta Prataculturae Sinica, 2013, 22(4): 69-75.
[17]  Zeng Z H, Zhang Z Y. The oxidative damage of Mitochondrial DNA by free radicals and aging[J]. Progress in Biochemistry and Biophysics, 1995, (5): 429-432.
[18]  Han G, Li S X, Xu P, et al. Analyisis of drought resistance on anatomical structure of leave of six species of shrubs[J]. Journal of Northwest Forestry University, 2006, 21(4): 43-46, 68.
[19]  Zhang Y Y, He K N, Dong M, et al. Influences of water-stress on daily changes of LWP and water use efficiency of Shepherdia argentea and Hippophae rhamnoides[J]. Soil and Water Conservation in China, 2011, (6): 22-25.
[20]  Chen S P, Bai Y F, Han X G. Variation of water-use efficiency of Leymus chinensis and Cleistogenes squarrosa in different plant communities in Xilin River Basin, Nei Mongol[J]. Acta Botanica Sinica, 2002, 12: 1484-1490.
[21]  Wang Y. Study on water-consumption characteristics and drought-resistance mechanism of four Artermisia species in Loess Plateau[D]. Shaanxi: Northwest Agriculture and Forestry University, 2010.
[22]  参考文献:
[23]  Wu M J, Yu P. Physiological role of plant peroxidase[J]. Journal of Biology, 1994, (6): 14-16.
[24]  Wu Z H, Zeng F H, Ma S J, et al. A review of advances in active oxygen metabolism in plants under water stress[J]. Subtropical Plant Science, 2004, 33(2): 77-80.
[25]  Jimenez C. Differential reactivity of carotene isomers from Dunaliella bardawl toward oxygen radicals[J]. Plant Physiology, 1993, 101: 385.
[26]  Sun Q, Hu J J. Plant Physiology Research Techniques[M]. Shaanxi: Northwest A & F University Press, 2006.
[27]  Riffith O W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine[J]. Analytical Biochemistry, 1980, 106(1): 207-212.
[28]  Zhang X Z. Determination of plant chlorophyll content - a mixture law of acetone and ethanol[J]. Liaoning Agricultural Science, 1986, (3): 26-28.
[29]  Li Z, Peng F, Su X Y. Physiological responses of white clover by different leaf types associated with anti-oxidative enzyme protection and osmotic adjustment under drought stress[J]. Acta Prataculturae Sinica, 2013, 22(2): 257-263.
[30]  Zhang Z L, Qu W J, Li X F. Plant Physiology Experimental Guidance[M]. Beijing: Higher Education Press, 2009.
[31]  Liu X Y. Discussion soybean drought assessment method[J]. Journal of China Oil Crop, 1986, (4): 23-26.
[32]  Liu F, Yang J, Zhang P J, et al. Relationships between geographical distribution of Artemisia giraldii and cli- mate[J]. Journal of Arid Land Resources and Environment, 2012, 26(6): 56-59.
[33]  Tang X M, Wang W Q, Ma C Y. Physiological drought responses of Glycyrrhiza uralensis leaves under prolonged water stress[J]. Journal of Agricultural University of Hebei, 2008, 31(2): 16-20.
[34]  Liu S W. Qinghai Flora (Volume 2)[M]. Qinghai: Qinghai People's Publishing House, 1999.
[35]  Wu Z T, Zhang G Y. Effects of Abscisic Acid, Cytokinin and Malonaldehyde on Superoxide Dismutase activity[J]. Plant Physiology Communications, 1990, (4): 30-32.
[36]  Li T, Sun J K, Tiao J Y, et al. Photosynthesis characteristics and Antioxidant Enzyme activity in Periploca sepium seedlings under drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(12): 2466-2471.
[37]  Zhu Z M, Yang C. Changes of four common plant populations growth and their anti-oxidative enzymatic system in desertification process[J]. Chinese Journal of Applied Ecology, 2004, 15(12): 2261-2266.
[38]  Bu C F, Liu G B, Dai Q H. Study on the effect of Sophora Viciifolia on the physical characteristics of soil[J]. Research of Soil and Water Conservation, 2003, 10(2): 25-27.
[39]  Yang M H, Yao W Q, Cao M M, et al. Study on the activities of antioxidative enzymatic system of the common plant populations in desertification process on the southeast edge of Mu Us Sandy Land[J]. Journal of Northwest A & F University(Natural Science Edition), 2012, 40(7): 203-208.
[40]  Hang F P, Dong L N, Luo W L, et al. Effects of stipa bungeana on soil water contents and nutrients of sloping lands in Loess Plateau of China[J]. Acta Agrestia Sinica, 2008, 16(4): 403-407.
[41]  Guo Y, Han R L, Liang Z S. Effect of soil drought on growth and water use efficiency characteristics of four native gramineous grasses in Loess Plateau[J]. Acta Prataculturae Sinica, 2010, 19(2): 21-30.
[42]  Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55: 373-399.
[43]  Papadakis A K, Roubelakis-Angelakis K A. Polyamines inhibit NADPH oxidase-mediated superoxide generation and putrescine prevents programmed cell death induced by polyamine oxidase-generated hydrogen peroxide[J]. Planta, 2005, 220(6): 826-837. 
[44]  张继澍. 植物生理学[M]. 北京: 高等教育出版社, 2006.
[45]  李朝周, 左丽萍, 李毅, 等. 两个海拔分布下红砂叶片对渗透胁迫的生理响应[J]. 草业学报, 2013, 22(1): 176-182. 浏览
[46]  单长卷, 韩蕊莲, 梁宗锁. 干旱胁迫下黄土高原4种乡土禾草抗氧化特性[J]. 生态学报, 2012, 32(4): 1174-1184.
[47]  裴斌, 张光灿, 张淑勇, 等. 土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响[J]. 生态学报, 2013, 33(5): 1386-1396.
[48]  Gechev T, Willekens H, Van Montagu M, et al. Different responses of tobacco antioxidant enzymes to light and chilling stress[J]. Journal of Plant Physiology, 2003, 160(5): 509-515.
[49]  Carvalho L C. Solanum lycopersicon Mill. and Nicotiana benthamiana L. under high light show distinct responses to anti-oxidative stress[J]. Journal of Plant Physiology, 2008, 165: 1300-1312.
[50]  李怀恩, 何娟娟, 秦毅, 等. 延河流域雨洪特性及洪水预报[J]. 水文, 2005, 25(5): 37-41.
[51]  陈云明, 梁一民, 程积民. 黄土高原林草植被建设的地带性特征[J]. 植物生态学报, 2002, 26(3): 339-345.
[52]  王力, 邵明安, 侯庆春. 土壤干层量化指标初探[J]. 水土保持学报, 2000, 14(4): 87-90.
[53]  全国土壤普查办公室. 全国第二次土壤普查暂行技术规程[M]. 北京:农业出版社, 1979.
[54]  蔡永立, 宋永昌. 浙江天童常绿阔叶林藤本植物的适应生态学I. 叶片解剖特征的比较[J]. 植物生态学报, 2001, 25(1): 90-98.
[55]  Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their function[J]. Plant Physiology, 2006, 141: 391-396.
[56]  王贺正, 张均, 吴金芝, 等. 不同氮素水平对小麦旗叶生理特性和产量的影响[J]. 草业学报, 2013, 22(4): 69-75. 浏览
[57]  吴明江, 于萍. 植物过氧化物酶的生理作用[J]. 生物学杂志, 1994, (6): 14-16.
[58]  吴志华, 曾富华, 马生健, 等. 水分胁迫下植物活性氧代谢研究进展(综述Ⅰ)[J]. 亚热带植物科学, 2004, 33(2): 77-80.
[59]  Jimenez C. Differential reactivity of -carotene isomers from Dunaliella bardawl toward oxygen radicals[J]. Plant Physiology, 1993, 101: 385.
[60]  孙群, 胡景江. 植物生理学研究技术[M]. 陕西: 西北农林科技大学出版社, 2006.
[61]  Riffith O W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine[J]. Analytical Biochemistry, 1980, 106(1): 207-212.
[62]  张宪政. 植物叶绿素含量测定——丙酮乙醇混合液法[J]. 辽宁农业科学, 1986, (3): 26-28.
[63]  李州, 彭燕, 苏星源. 不同叶型白三叶抗氧化保护及渗透调节生理对干旱胁迫的响应[J]. 草业学报, 2013, 22(2): 257-263. 浏览
[64]  张志良, 瞿伟菁, 李小方. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2009.
[65]  刘学义. 大豆抗旱性评定方法探讨[J]. 中国油料作物学报, 1986, (4): 23-26.
[66]  刘芳, 杨劼, 张璞进, 等. 茭蒿(Artemisia giraldii)的地理分布及与气候的关系[J]. 干旱区资源与环境, 2012, 26(6): 56-59.
[67]  唐晓敏, 王文全, 马春英. 长期水分胁迫下甘草叶片的抗旱生理响应[J]. 河北农业大学学报, 2008, 31(2): 16-20.
[68]  刘尚武. 青海植物志(第2卷)[M]. 青海:青海人民出版社, 1999.
[69]  伍泽堂, 张刚元. 脱落酸、细胞分裂素和丙二醛对超氧化物歧化酶活性的影响[J]. 植物生理学通讯, 1990, (4): 30-32.
[70]  李田, 孙景宽, 田家怡, 等. 干旱胁迫对杠柳光合特性及抗氧化酶活性的影响[J]. 西北植物学报, 2010, 30(12): 2466-2471.
[71]  朱志梅, 杨持. 沙漠化过程中四个共有种的生长和抗氧化系统酶类变化[J]. 应用生态学报, 2004, 15(12): 2261-2266.
[72]  曾昭惠, 张宗玉. 自由基对线粒体DNA的氧化损伤与衰老[J]. 生物化学与生物物理进展, 1995, (5): 429-432.
[73]  韩刚, 李少雄, 徐鹏, 等. 6种灌木叶片解剖结构的抗旱性分析[J]. 西北林学院学报, 2006, 21(4): 43-46, 68.
[74]  张益源, 贺康宁, 董梅, 等. 水分胁迫对银水牛果和沙棘叶水势日过程及水分利用效率的影响[J]. 中国水土保持, 2011, (6): 22-25.
[75]  卜崇峰, 刘国彬, 戴全厚. 纸坊沟流域狼牙刺对土壤物理性状的影响[J]. 水土保持研究, 2003, 10(2): 25-27.
[76]  杨梅焕, 姚顽强, 曹明明, 等. 毛乌素沙地东南缘沙漠化共有种植物叶片抗氧化酶活性研究[J]. 西北农林科技大学学报(自然科学版), 2012, 40(7): 203-208.
[77]  韩凤朋, 董丽娜, 罗文林, 等. 黄土高原侵蚀区长芒草对坡地土壤水分养分的影响[J]. 草地学报, 2008, 16(4): 403-407.
[78]  郭颖, 韩蕊莲, 梁宗锁. 土壤干旱对黄土高原4个乡土禾草生长及水分利用特性的影响[J]. 草业学报, 2010, 19(2): 21-30. 浏览
[79]  陈世苹, 白永飞, 韩兴国. 内蒙古锡林河流域不同植物群落中羊草和糙隐子草水分利用效率的变异(英文)[J]. Acta Botanica Sinica, 2002, 12: 1484-1490.
[80]  王勇. 黄土高原菊科蒿属四种植物的耗水规律及抗旱特性研究[D]. 陕西:西北农林科技大学, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133