Wang S, Wan C, Wang Y, et al. The characteristics of Na+, K+ and free proline distribution in several drought-resistance plants of the Alxa Desert, China[J]. Journal of Arid Environments, 2004, 56(3): 525-539.
[2]
Munns R, Cramer G R. Is coordination of leaf and root growth mediated by abscisic acid? Opinion[J]. Plant and Soil, 1996, 185(1): 33-49.
[3]
He Z Q, Li H X, Tang H R, et al. Effect of arbuscular mycorrhizal fungi on tomato endogenous under NaCl stress[J]. Acta Agriculturae Nucleatae Sinica, 2010, 24(5): 1099-1104.
[4]
Yu J X, Li H, Guo S X, et al. Influence of arbuscular mycorrhizal fungi on endogenous hormone Levels in tomato plants[J]. Journal of Qingdao Agricultural University, 2010, 27(2): 100-104.
Liu J, Maldonado-Mendoza I, Lopez-Meyer M, et al. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots[J]. The Plant Journal, 2007, 50(3): 529-544.
He Z Q, He C X, Zhang Z B, et al. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress[J]. Colloids and Surfaces B: Biointerfaces, 2007, 59(2): 128-133.
[21]
Alguacil M M, Hernández J A, Caravaca F, et al. Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil[J]. Physiologia Plantarum, 2003, 118(4): 562-570.
[22]
Feng G, Zhang F, Li X, et al. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots[J]. Mycorrhiza, 2002, 12(4): 185-190.
[23]
Jiang M, Zhang J. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves[J]. Journal of Experimental Botany, 2002, 53: 2401-2410.
[24]
Garg N, Manchanda G. Effect of arbuscular mycorrhizal inoculation on salt-induced nodule senescence in Cajanus cajan(pigeonpea)[J]. Journal of Plant Growth Regulation, 2008, 27(2): 115-124.
[25]
Kaya C, Ashraf M, Sonmez O, et al. The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity[J]. Scientia Horticulturae, 2009, 121(1): 1-6.
[26]
Juniper S, Abbott L. Vesicular-arbuscular mycorrhizas and soil salinity[J]. Mycorrhiza, 1993, 4(2): 45-57.
Al-Karaki G N, Hammad R, Rusan M. Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress[J]. Mycorrhiza, 2001, 11(1): 43-47.
[29]
Niu X, Bressan R A, Hasegawa P M, et al. Ion homeostasis in NaCl stress environments[J]. Plant Physiology, 1995, 109(3):735.
Rabie G H, Almadini A M. Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress[J]. African Journal of Biotechnology, 2005, 4(3): 210-222.
Sharifi M, Ghorbanli M, Ebrahimzadeh H. Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi[J]. Journal of Plant Physiology, 2007, 164(9): 1144-1151.
[35]
Jindal V, Atwal A, Sekhon B S, et al. Effect of vesicular-arbuscular mycorrhizae on metabolism of moong plants under NaCl salinity[J]. Plant Physiology and Biochemistry, 1993, 31(4): 475-481.
[36]
Sannazzaro A I, Echeverría M, Albertó E O, et al. Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza[J]. Plant Physiology and Biochemistry, 2007, 45(1): 39-46.
Wang S, Wan C, Wang Y, et al. The characteristics of Na+, K+ and free proline distribution in several drought-resistance plants of the Alxa Desert, China[J]. Journal of Arid Environments, 2004, 56(3): 525-539.
[39]
Munns R, Cramer G R. Is coordination of leaf and root growth mediated by abscisic acid? Opinion[J]. Plant and Soil, 1996, 185(1): 33-49.
Xu S, Li J L, Zhao D H. Research advances in physiological ecological and biochemical characteristics of Festuca arundinacea[J]. Acta Prataculturae Sinica, 2004, 13(1): 58-64.
[44]
Chen J B, Yan J, Zhang T T, et al. Growth responses of four warm season turfgrasses to long-term salt stress[J]. Acta Prataculturae Sinica, 2008, 17(5): 30-36.
[45]
Li Y, Liu G B, Gao H W, et al. A comprehensive evaluation of salt-tolerance and the physiological response of Medicago sativa at the seedling stage[J]. Acta Prataculturae Sinica, 2010, 19(4): 79-86.
[46]
Liang H M, Xia Y, Du F, et al. Effects of NaCl stress on physiological index of two Lawn grasses[J]. Grassland of China, 2001, 23(5): 27-30.
[47]
Zeng G P, Zhang X, Liu H L, et al. Effect of AM Fungi on salt tolerance of Carthamus tinctorius L. under salt stress[J]. Plant Physiology Journal, 2012, 47(11): 1069-1074.
[48]
Ye S P, Zeng X H, Xin G R, et al. Effects of Arbuscular Mycorrhizal Fungi (AMF) on growth and regrowth of bermudagrass under different P supply levels[J]. Acta Prataculturae Sinica, 2013, 22(1): 46-52.
[49]
Lu J Y, Mao Y M, Shen L Y, et al. Effects of VA mycorrhizal fungi inoculated on drought tolerance of wild jujube(Zizyphus spinosus Hu) seedlings[J]. Acta Horticulturae Sinica, 2003, 30(1): 29-33.
[50]
Liu J, Xiao B, Wang L X, et al. Influence of AM on the growth of tea plant and tea quality under salt stress[J]. Journal of Tea Science, 2013, 33(2): 140-146.
[51]
Wang S H, Wang X J, Wang Q, et al. Responses of rhizosphere microorganisms to arbuscular mycorrhizal fungi and their effects on host plants[J]. Acta Prataculturae Sinica, 2007, 16(3): 108-113.〖ZK)
[52]
Liu J, Maldonado Mendoza I, Lopez Meyer M, et al. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots[J]. The Plant Journal, 2007, 50(3): 529-544.
[53]
Gao C. Effects of arbuscular mycorrhizal fungi on the growth and salt tolerance of Pyrus betulaefolia seedlings[D]. Chongqing: Southwestern University, 2013.
[54]
Guo S X, Liu R J. Effects of arbuscular mycorrhizal fungi Glomus mosseae on salt tolerance of Paeonia suffruticosa Andr.[J]. Plant Physiology Communications, 2010, 46(10): 1007-1011.
[55]
Yang R H, Liu R J, Liu L C, et al. Effects of arbuscular mycorrhizal fungi and salicylic acid on salt tolerance of strawberry (Fragariaxananassa Duch) plants[J]. Scientia Agricultura Sinica, 2009, 42(5): 1590-1594.
[56]
Fan R P, Zhou Q, Zhou B, et al. Effects of salinization stress on growth and the antioxidant system of tall fescue[J]. Acta Prataculturae Sinica, 2012, 21(1): 112-117.
[57]
Liu R J, Luo X S. A new method to quantify the inoculum potential of arbuscular mycorrhizal fungi[J]. New Phytologist, 1994, 128(1): 89-92.
[58]
Wang X K. Plant Physiology and Biochemistry experimental principles and techniques[M]. Beijing: Higher Education Press, 2006: 1-283.
[59]
Hao Z B, Cang J, Xu Z. Plant physiology experiments[M]. Harbin: Harbin Institute of Technology Press, 2004: 1-147.
He Z Q, He C X, Zhang Z B, et al. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress[J]. Colloids and Surfaces B: Biointerfaces, 2007, 59(2): 128-133.
[62]
Alguacil M M, Hernández J A, Caravaca F, et al. Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil[J]. Physiologia Plantarum, 2003, 118(4): 562-570.
[63]
Feng G, Zhang F, Li X, et al. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots[J]. Mycorrhiza, 2002, 12(4): 185-190.
[64]
Jiang M, Zhang J. Water stress induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves[J]. Journal of Experimental Botany, 2002, 53: 2401-2410.
[65]
Garg N, Manchanda G. Effect of arbuscular mycorrhizal inoculation on salt induced nodule senescence in Cajanus cajan (pigeonpea)[J]. Journal of Plant Growth Regulation, 2008, 27(2): 115-124.
[66]
Kaya C, Ashraf M, Sonmez O, et al. The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity[J]. Scientia Horticulturae, 2009, 121(1): 1-6.
[67]
Juniper S, Abbott L. Vesicular arbuscular mycorrhizas and soil salinity[J]. Mycorrhiza, 1993, 4(2): 45-57.
[68]
Li X T, Cao J, Wei X J, et al. Effect of extended exposure to NaCl stress on the growth, ion distribution and photosynthetic characteristics of malting barley (Hordeum vulgare)[J]. Acta Prataculturae Sinica, 2013, 22(6): 108-116.
[69]
Al Karaki G N, Hammad R, Rusan M. Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress[J]. Mycorrhiza, 2001, 11(1): 43-47.
[70]
Niu X, Bressan R A, Hasegawa P M, et al. Ion homeostasis in NaCl stress environments[J]. Plant Physiol gy, 1995, 109(3): 735.
[71]
Li H Y, Zheng Q S, Liu Z P, et al. Effects of various concentration of seawater on the growth and physiological characteristics of Lactuca indica seedlings[J]. Bulletin of Botany, 2010, 45(1): 73-78.
[72]
Rabie G H, Almadini A M. Role of bioinoculants in development of salt tolerance of Vicia faba plants under salinity stress[J]. African Journal of Biotechnology, 2005, 4(3): 210-222.
[73]
Pan R C, Dong Y D. Plant Physiology[M]. Beijing: Higher Education Press, 1995: 1-206.
[74]
Xue X D, Dong X Y, Duan Y X, et al. A comparison of salt resistance of three kinds of Zoysia at different salt concentrations[J]. Acta Prataculturae Sinica, 2013, 22(6): 315-320.
[75]
Sharifi M, Ghorbanli M, Ebrahimzadeh H. Improved growth of salinity stressed soybean after inoculation with salt pre treated mycorrhizal fungi[J]. Journal of Plant Physiology, 2007, 164(9): 1144-1151.
[76]
Jindal V, Atwal A, Sekhon B S, et al. Effect of vesicular arbuscular mycorrhizae on metabolism of moong plants under NaCl salinity[J]. Plant Physiology and Biochemistry, 1993, 31(4): 475-481.
[77]
Sannazzaro A I, Echeverría M, Albertó E O, et al. Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza[J]. Plant Physiology and Biochemistry, 2007, 45(1): 39-46.
[78]
Yuan X X, Wang J, Xie Y J, et al. Effects of Carbon Monixide on salt tolerance and Proline content of roots in wheat seedling[J]. Plant Physiology Communications, 2009, 45(6): 567-570.