全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2014 

贝加尔针茅草原土壤微生物功能多样性对氮素和水分添加的响应

DOI: 10.11686/cyxb20140441, PP. 343-350

Keywords: 贝加尔针茅草原,氮素与水分添加,土壤微生物群落,功能多样性,Biolog-Eco

Full-Text   Cite this paper   Add to My Lib

Abstract:

应用Biolog技术研究了连续2年氮素与水分添加处理对贝加尔针茅草原土壤微生物功能多样性的影响。结果表明,水分添加能够减少氮肥对微生物的抑制作用,增强微生物的代谢活性和微生物对碳源的利用能力,水分添加与N15水平氮处理的交互作用显著提高了土壤微生物对碳源的利用能力和功能多样性。与对照相比,高氮处理(N100、N150、N200和N300)下微生物群落丰富度指数和均匀度指数降低,而优势度指数升高。氮素与水分添加处理不仅改变了微生物的功能多样性,也使微生物对碳源的利用模式发生转变。主成分分析表明,低氮肥与高氮肥处理下土壤微生物对碳源利用模式上存在较大差异,氮肥是主要影响因子。糖类、氨基酸类和代谢中间产物及次生代谢物是土壤微生物利用的主要碳源。土壤总有机碳、全氮、铵态氮、硝态氮含量与微生物群落功能多样性密切相关。

References

[1]  Reference:
[2]  Zhang L, Huang J H, Bai Y F, et al. Effects of nitrogen addition on net nitrogen mineralization in Leymus chineseis grassland, Inner Mongolia, China[J]. Chinese Journal of Plant Ecology, 2009, 33(3): 563-569. 
[3]  Zhou X B, Zhang Y M, Downing A. Non linear response of microbial activity across a gradient of nitrogen addition to a soil from the Gurbantunggut Desert, northwestern China[J]. Soil Biology and Biochemistry, 2012, 47: 67-77.
[4]  Zhang N L, Guo J X, Wang X Y, et al. Soil microbial feedbacks to climate warming and atmospheric N deposition[J]. Journal of Plant Ecology(Chinese Version), 2007, 31(2): 252-261.
[5]  Wilkinson S C, Anderson J M, Scardelis S P, et al. PLFA profiles of microbial communities in decomposing conifer litters subject to moisture stress[J]. Soil Biology and Biochemistry, 2002, 34: 189-200.
[6]  Long S Y, Bao Y J, Li Z H, et al. The carbon contents and the relationship with the calorific values of 67 plant species in Inner Mongolia grasslands[J]. Acta Prataculturae Sinica, 2013, 22(1): 112-119.
[7]  Li Y Z, Fan J W, Zhang L X, et al. The impact of different land use and management on community composition, species diversity and productivity in a typical temperate grassland[J]. Acta Prataculturae Sinica, 2013, 22(1): 1-9.
[8]  Zhao S, Zhang J N, Lai X, et al. Analysis of microbial biomass C.N and soil microbial community structure of stipa steppes using PLFA at grazing and fenced in Inner Mongolia,China[J]. Journal of Agro-Environment Science, 2011, 30(6): 1126-1134.
[9]  Wendu R L, Li G, Yang D L, et al. nifH gene diversity and community structure of soil nitrogen-fixing bacteria in Hulunbeier grassland,Inner Mongolia[J]. Chinese Journal of Ecology, 2011, 30(4): 790-797.
[10]  Konopka A, Oliver L, Turco R F. The use of carbon substrate utilization patterns in environmental and ecological microbiology[J]. Microbial Ecology, 1998, 35: 103-115. 
[11]  参考文献:
[12]  张璐, 黄建辉, 白永飞, 等. 氮素添加对内蒙古羊草草原净氮矿化的影响[J]. 植物生态学报, 2009, 33(3): 563-569. 
[13]  Zhou X B, Zhang Y M, Downing A. Non-linear response of microbial activity across a gradient of nitrogen addition to a soil from the Gurbantunggut Desert, northwestern China[J]. Soil Biology and Biochemistry, 2012, 47: 67-77.
[14]  张乃莉, 郭继勋, 王晓宇, 等. 土壤微生物对气候变暖和大气N 沉降的响应[J]. 植物生态学报, 2007, 31(2): 252-261.
[15]  Wilkinson S C, Anderson J M, Scardelis S P, et al. PLFA profiles of microbial communities in decomposing conifer litters subject to moisture stress[J]. Soil Biology and Biochemistry, 2002, 34: 189-200.
[16]  龙世友, 鲍雅静, 李政海, 等. 内蒙古草原67种植物碳含量分析及与热值的关系研究[J]. 草业学报, 2013, 22(1): 112-119. 浏览
[17]  李愈哲, 樊江文, 张良侠, 等. 不同土地利用方式对典型温性草原群落物种组成和多样性以及生产力的影响[J]. 草业学报, 2013, 22(1): 1-9. 浏览
[18]  赵帅, 张静妮, 赖欣, 等. 放牧与围栏内蒙古针茅草原土壤微生物生物量碳、氮变化及微生物群落结构PLFA 分析[J]. 农业环境科学学报, 2011, 30(6): 1126-1134.
[19]  文都日乐, 李刚, 杨殿林, 等. 呼伦贝尔草原土壤固氮微生物nifH 基因多样性与群落结构[J]. 生态学杂志, 2011, 30(4): 790-797.
[20]  李玉洁, 李刚, 宋晓龙, 等. 休牧对贝加尔针茅草原土壤微生物群落功能多样性的影响[J]. 草业学报, 2013, 22(6): 21-30. 浏览
[21]  Chapin F S, Walker B H, Hobbs R J. Biotic control over the functioning of ecosystems[J]. Science, 1997, 277: 500-504.
[22]  Copley J. Ecology goes underground[J]. Nature, 2000, 406: 452-454.
[23]  杨殿林, 韩国栋, 胡跃高, 等. 放牧对贝加尔针茅草原群落植物多样性和生产力的影响[J]. 生态学杂志, 2006, 25(12): 1470-1475.
[24]  鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 30-83.
[25]  张海芳, 李刚, 宋晓龙, 等. 内蒙古贝加尔针茅草原不同利用方式土壤微生物功能多样性变化[J]. 生态学杂志, 2012, 31(5):1143-1149.
[26]  孙凤霞, 张伟华, 徐明岗, 等. 长期施肥对红壤微生物生物量碳氮和微生物碳源利用的影响[J]. 应用生态学报, 2010, 21(11):2792-2798.
[27]  孔维栋, 刘可星, 廖宗文. 有机物料种类及腐熟水平对土壤微生物群落的影响[J]. 应用生态学报, 2004, 15(3): 487-492.
[28]  Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole carbon source utilization[J]. Applied and Environmental Microbiology, 1991, 57: 2351-2359.
[29]  王光华, 刘俊杰, 齐晓宁, 等. Biolog和PCR-DGGE技术解析施肥对德惠黑土细菌群落结构和功能的影响[J]. 生态学报, 2008, 28(1): 220-226.
[30]  Konopka A, Oliver L, Turco R F. The use of carbon substrate utilization patterns in environmental and ecological microbiology[J]. Microbial Ecology, 1998, 35: 103-115. 
[31]  Li Y J, Li G, Song X L, et al. Effect of rest-grazing on soil microbial community functional diversity in Stipa baicalensis steppe[J]. Acta Prataculturae Sinica, 2013, 22(6): 21-30.
[32]  Chapin F S, Walker B H, Hobbs R J. Biotic control over the functioning of ecosystems[J]. Science, 1997, 277: 500-504.
[33]  Copley J. Ecology goes underground[J]. Nature, 2000, 406: 452-454.
[34]  Yang D L, Han G D, Hu Y G, et al. Effects of grazing intensity on plant diversity and aboveground biomass of Stipa baicalensis grassland[J]. Chinese Journal of Ecology, 2006, 25(12): 1470-1475.
[35]  Bao S D. Soil agrochemical analysis[M]. Beijing: China Agriculture Press, 2000: 30-83.
[36]  Zhang H F, Li G, Song X L, et al. Functional diversityofsoil microbial communitiesin steppeinInnerMongoliaasaffectedbydifferent landusepatterns[J]. Chinese Journal of Ecology, 2012, 31(5): 1143-1149.
[37]  Sun F X, Zhang W H, Xu M G, et al. Effects of long-term fertilization on microbial biomass carbon and nitrogen and on carbon source utilization of microbes in a red soil[J]. Chinese Journal of Applied Ecology, 2010, 21(11): 2792-2798.
[38]  Kong W D, Liu K X, Liao Z W. Effects of different organic materials and their composting levels on soil microbial community[J]. Chinese Journal of Applied Ecology, 2004, 15(3): 487-492.
[39]  Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole carbon source utilization[J]. Applied and Environmental Microbiology, 1991, 57: 2351-2359.
[40]  Wang G H, Liu J J, Qi X N, et al. Effects of fertilization on bacterial community structure and function in a black soil of Dehui region estimated by Biolog and PCR-DGGE methods[J]. Acta Ecologica Sinica, 2008, 28(1): 220-226.
[41]  Schutter M, Dick R. Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates[J]. Soil Biology and Biochemistry, 2001, 33: 1481-1491.
[42]  Zhang Y Y, Qu L Y, Chen L X. An amendment on information extraction of biolog ecoPlate(TM)[J]. Microbiology, 2009, 36(7): 1083-1091.
[43]  Qi S, Zhao X R, Zheng H X, et al. Changes of soil biodiversity in Inner Mongolia steppe after 5 years of N and P fertilizer applications[J]. Acta Ecologica Sinica, 2010, 30(20): 5518-5526.
[44]  Hou X J, Wang J K, Li S P. Effects of different fertilization and plastic-mulching on functional diversity of soil microbial community[J]. Acta Ecologica Sinica, 2007, 27(2): 655-661.
[45]  Cederlunda H, Thierfelder T, Stenstr ma J. Functional microbial diversity of the railway track bed[J]. Science of the Total Environment, 2008, 397: 205-214.
[46]  Chen M M, Zhu Y G, Su Y H, et al. Effects of soil moisture and plant interactions on the soil microbial community structure[J]. European Journal of Soil Biology, 2007, 43: 31-38.
[47]  Sardans J, Pe uelas J, Estiarte M. Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland[J]. Applied Soil Ecology, 2008, 39: 223-235.
[48]  Zhong W H, Cai Z C. Methods for studying soil microbial diversity[J]. Chinese Journal of Applied Ecology, 2004, 15(5): 899-904.
[49]  Vanegas J, Landazabal G, Melgarejo L M, et al. Structural and functional characterization of the microbial communities associated with the upland and irrigated rice rhizospheres in a neotropical Colombian savannah[J]. European Journal of Soil Biology, 2013, 55: 1-8.
[50]  Dalmonech D, Lagomarsino A, Moscatelli M C, et al. Microbial performance under increasing nitrogen availability in a Mediterranean forest soil[J]. Soil Biology and Biochemistry, 2010, 42: 1596-1606.
[51]  Anthony G, Donnell O, Seasman M, et al. Plants and fertilizers as drivers of changes in microbial community structure and function in soils[J]. Plant and Soil, 2001, 232: 135-145.
[52]  Kemmitt S J, Wright D, Goulding K W T, et al. pH regulation of carbon and nitrogen dynamics in two agricultural soils[J]. Soil Biology and Biochemistry, 2006, 38: 898-911.
[53]  Luo X Q, Hao X H, Chen T, et al. Effects of long-term different fertilization on microbial community functional diversity in paddy soil[J]. Acta Ecologica Sinica, 2009, 29(2): 740-748.
[54]  Schutter M, Dick R. Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates[J]. Soil Biology and Biochemistry, 2001, 33: 1481-1491.
[55]  张燕燕, 曲来叶, 陈利顶. Biolog EcoPlateTM实验信息提取方法改进[J]. 微生物学通报, 2009, 36(7): 1083-1091.
[56]  齐莎, 赵小蓉, 郑海霞, 等. 内蒙古典型草原连续5年施用氮磷肥土壤生物多样性的变化[J]. 生态学报, 2010, 30(20): 5518-5526.
[57]  侯晓杰, 汪景宽, 李世朋. 不同施肥处理与地膜覆盖对土壤微生物群落功能多样性的影响[J]. 生态学报, 2007, 27(2): 655-661.
[58]  Cederlunda H, Thierfelder T, Stenstrma J. Functional microbial diversity of the railway track bed[J]. Science of the Total Environment, 2008, 397: 205-214.
[59]  Chen M M, Zhu Y G, Su Y H, et al. Effects of soil moisture and plant interactions on the soil microbial community structure[J]. European Journal of Soil Biology, 2007, 43: 31-38.
[60]  Sardans J, Peuelas J, Estiarte M. Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland[J]. Applied Soil Ecology, 2008, 39: 223-235.
[61]  钟文辉, 蔡祖聪. 土壤微生物多样性研究方法[J]. 应用生态学报, 2004, 15(5): 899-904.
[62]  Vanegas J, Landazabal G, Melgarejo L M, et al. Structural and functional characterization of the microbial communities associated with the upland and irrigated rice rhizospheres in a neotropical Colombian savannah[J]. European Journal of Soil Biology, 2013, 55: 1-8.
[63]  Dalmonech D, Lagomarsino A, Moscatelli M C, et al. Microbial performance under increasing nitrogen availability in a Mediterranean forest soil[J]. Soil Biology and Biochemistry, 2010, 42: 1596-1606.
[64]  Anthony G, Donnell O, Seasman M, et al. Plants and fertilizers as drivers of changes in microbial community structure and function in soils[J]. Plant and Soil, 2001, 232: 135-145.
[65]  Kemmitt S J, Wright D, Goulding K W T, et al. pH regulation of carbon and nitrogen dynamics in two agricultural soils[J]. Soil Biology and Biochemistry, 2006, 38: 898-911.
[66]  罗希茜, 郝晓晖, 陈涛, 等. 长期不同施肥对稻田土壤微生物群落功能多样性的影响[J]. 生态学报, 2009, 29(2): 740-748.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133