全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2014 

菌根真菌对白三叶根际团聚体稳定性、球囊霉素相关土壤蛋白和糖类物质的影响

DOI: 10.11686/cyxb20140433, PP. 269-275

Keywords: 白三叶,丛枝菌根,水稳性团聚体,球囊霉素

Full-Text   Cite this paper   Add to My Lib

Abstract:

盆栽条件下研究丛枝菌根真菌(地表球囊霉和隐类球囊霉)对白三叶生长、叶绿素含量、根际土壤水稳性团聚体粒级分布和稳定性,以及球囊霉素相关土壤蛋白(GRSP)和糖类物质含量的影响。结果表明,接种85d后根系菌根侵染率为35%~75%。接种处理显著提高了地上部、地下部和植株总干物质量以及叶绿素含量,其中白三叶对隐类球囊霉的依赖性高于地表球囊霉。接种菌根真菌处理也增加了根际0.25~0.5mm和0.5~1mm粒径水稳性团聚体含量,降低了1~2mm粒径水稳性团聚体含量,但没有影响2~4mm粒径水稳性团聚体含量以及平均质量直径。菌根接种增加了白三叶根际土壤易提取GRSP、总GRSP、热水提取碳水化合物和水解碳水化合物的含量。相关性分析显示,根系菌根侵染率显著地促进GRSP的含量,GRSP主要对<1mm粒级水稳性团聚体产生正效应,团聚体稳定性主要依赖总GRSP,不同组分的GRSP对土壤糖类物质的贡献不同。

References

[1]  Reference:
[2]  Rillig M C, Wright S F, Eviner V T. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species[J]. Plant and Soil, 2002, 238:325-333.
[3]  Díaz Zorita M, Perfect E, Grove J H. Disruptive methods for assessing soil structure[J]. Soil and Tillage Research, 2002, 64: 3-22.
[4]  Shan G L, Chu X H, Tian Q S, et al. Research on the dynamic changes of soil properties of typical steppe in the restoring process[J]. Acta Prataculturae Sinica, 2012, 21(4): 1-9.
[5]  Rillig M C, Mummey D L. Mycorrhizas and soil structure[J]. New Phytologist, 2006, 171: 41-53.
[6]  Liu Z L, Yu W T. Review of researches on soil aggregate and soil organic carbon[J]. Chinese Journal of Eco-Agriculture, 2011, 19(2): 447-455.
[7]  Feng G, Zhang Y F, Li X L. Effect of external hyphae of arbuscular mycorrhizal plant on water-stable aggregates in sandy soil[J]. Journal of Soil Water Conservation, 2001, 15(4): 99-102.
[8]  Wu Q S. Research and Application if Horticultural Plants Arbuscular Mycorrhizal[M]. Beijing: Science Press, 2010.
[9]  Wright S F, Upadhyaya A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi[J]. Soil Science, 1996, 161: 575-586.
[10]  Bedini S, Pellegrino E, Avio L, et al. Changes in soil aggregation and glomalin-related soil protein content as affected by arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices[J]. Soil Biology and Biochemistry, 2009, 41: 1491-1496. 
[11]  Franzluebbers A J, Wright S F, Stuedemann J A. Soil aggregation and glomalin under pastures in the Southern Piedmont USA[J]. Soil Science Society of America Journal, 2000, 64: 1018-1026.
[12]  Zhang C X, Nan Z B. Research progress on effects of grazing on physical and chemical characteristics of grassland soil[J]. Acta Prataculturae Sinica, 2010, 19(4): 204-211.
[13]  An H, Xu K. The effect of grazing disturbance on soil properties in desert steppe[J]. Acta Prataculturae Sinica, 2013, 22(4): 35-42.
[14]  Lu Y M, Su C Q, Li H F. Effects of different salts stress on seed germination and seedling growth of Trifolium repens[J]. Acta Prataculturae Sinica, 2013, 22(4): 123-129.
[15]  Bao G Z, Li X L, Bai J R. Effects of grazing and patch quality of soil on density and branching pattern of Trifolium repens[J]. Acta Ecologica Sinica, 2000, 20(5): 779-783.
[16]  Wang X K. Plant Physiology and Biochemistry Experimental Principles and Techniques (2nd Edition)[M]. Beijing: Higher Education Press, 2008.
[17]  Wu Q S, Xia R X, Zou Y N. Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress[J]. European Journal of Soil Biology, 2008, 44: 122-128.
[18]  Kemper W D, Rosenau R C. Aggregate stability and size distribution[A]. Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods[M]. South Segoe, USA: American Society of Agronomy-Soil Science Society of America, 1986: 425-442.
[19]  Li X G. Effect of straw on soil organic carbon constitution and structural stability[J]. Acta Pedologica Sinica, 2002, 39(3): 422-423.
[20]  Wu Q S, He X H, Cao M Q, et al. Relationships between glomalin related soil protein in water stable aggregate fractions and aggregate stability in citrus rhizosphere[J]. International Journal of Agriculture and Biology, 2013, 15: 603-606.
[21]  Ye S P, Zeng X H, Xin G R, et al. Effects of arbuscular mycorrhizal fungi (AMF) on growth and regrowth of bermudagrass under different P supply levels[J]. Acta Prataculturae Sinica, 2013, 22(1): 46-52. 
[22]  Abbott L K, Robson A D. The role of vesicular arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inoculation[J]. Australian Journal of Agricultural Research, 1982, 33: 389-408.
[23]  Li Y Q, Li X, Hu T X. Effects of eucalyptus grandis leaf litter decomposition on the growth and photosynthetic characteristics of Eremochola ophiuroides[J]. Acta Prataculturae Sinica, 2013, 22(3): 169-176.
[24]  Li D K, Wang D M, Yu Z D. Advances on physiological and biochemistry effects of the symbiosis between AM fungi and plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2002, 22(5): 1255-1262.
[25]  Wu Q S, He X H, Zou Y N, et al. Spatial distribution of glomalin-related soil protein and its relationships with root mycorrhization, soil aggregates, carbohydrates, activity of protease and β glucosidase in the rhizosphere of Citrus unshiu[J]. Soil Biology and Biochemistry, 2012, 45: 181-183.
[26]  Rillig M C, Maestre F T, Lamit L J. Microsite differences in fungal hyphal length, glomalin, and soil aggregate stability in semiarid Mediterranean steppes[J]. Soil Biology and Biochemistry, 2003, 35: 1257-1260.
[27]  Tian H, Liu X L, Gai J P, et al. Review of glomalin-related soil protein and its funtion[J]. Chinese Journal of Soil Science, 2009, 40(5): 1215-1220.
[28]  Koide R T, Peoples M S. Behavior of Bradford reactive substances is consistent with predictions for glomalin[J]. Applied Soil Ecology, 2013, 63: 8-14.
[29]  Piotrowski J S, Denich T, Klironomos J N, et al. The effects of arbuscular mycorrhizas on soil aggregation depend on the interaction between plant and fungal species[J]. New Phytologist, 2004, 164: 365-373.
[30]  Zhang L G, Zeng F J, Liu B, et al. Study of the photosynthesis characteristics and physical signs of four plants at the desert-oasis ecotone[J]. Acta Prataculturae Sinica, 2012, 21(1): 103-111.
[31]  参考文献:
[32]  Rillig M C, Wright S F, Eviner V T. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species[J]. Plant and Soil, 2002, 238:325-333.
[33]  Díaz-Zorita M, Perfect E, Grove J H. Disruptive methods for assessing soil structure[J]. Soil and Tillage Research, 2002, 64: 3-22.
[34]  单贵莲, 初晓辉, 田青松, 等. 典型草原恢复演替过程中土壤性状动态变化研究[J]. 草业学报, 2012, 21(4): 1-9. 浏览
[35]  Rillig M C, Mummey D L. Mycorrhizas and soil structure[J]. New Phytologist, 2006, 171: 41-53.
[36]  刘中良, 宇万太. 土壤团聚体中有机碳研究[J]. 中国生态农业学报, 2011, 19(2): 447-455.
[37]  冯固, 张玉风, 李晓林. 丛枝菌根真菌的外生菌丝对土壤水稳性团聚体形成的影响[J]. 水土保持学报, 2001, 15(4): 99-102.
[38]  吴强盛. 园艺植物丛枝菌根研究与应用[M]. 北京: 科学出版社, 2010.
[39]  Wright S F, Upadhyaya A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi[J]. Soil Science, 1996, 161: 575-586.
[40]  Bedini S, Pellegrino E, Avio L, et al. Changes in soil aggregation and glomalin-related soil protein content as affected by arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices[J]. Soil Biology and Biochemistry, 2009, 41: 1491-1496. 
[41]  Franzluebbers A J, Wright S F, Stuedemann J A. Soil aggregation and glomalin under pastures in the Southern Piedmont USA[J]. Soil Science Society of America Journal, 2000, 64: 1018-1026.
[42]  张成霞, 南志标. 放牧对草地土壤理化特性影响的研究进展[J]. 草业学报, 2010, 19(4): 204-211. 浏览
[43]  安慧, 徐坤. 放牧干扰对荒漠草原土壤性状的影响[J]. 草业学报, 2013, 22(4): 35-42. 浏览
[44]  卢艳敏, 苏长青, 李会芬. 不同盐胁迫对白三叶种子萌发及幼苗生长的影响[J]. 草业学报, 2013, 22(4): 123-129. 浏览
[45]  包国章, 李向林, 白静仁. 放牧及土壤斑块质量对白三叶密度及峰值格局的影响[J]. 生态学报, 2000, 20(5): 779-783.
[46]  王学奎. 植物生理生化实验原理和技术(第2版)[M]. 北京: 高等教育出版社, 2008.
[47]  Wu Q S, Xia R X, Zou Y N. Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress[J]. European Journal of Soil Biology, 2008, 44: 122-128.
[48]  Kemper W D, Rosenau R C. Aggregate stability and size distribution[A]. Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods[M]. South Segoe, USA: American Society of Agronomy-Soil Science Society of America, 1986: 425-442.
[49]  李小刚. 施用秸秆对土壤有机碳组成和结构稳定性的影响[J]. 土壤学报, 2002, 39(3): 422-423.
[50]  Wu Q S, He X H, Cao M Q, et al. Relationships between glomalin-related soil protein in water-stable aggregate fractions and aggregate stability in citrus rhizosphere[J]. International Journal of Agriculture and Biology, 2013, 15: 603-606.
[51]  叶少萍, 曾秀华, 辛国荣, 等. 不同磷水平下丛枝菌根真菌(AMF)对狗牙根生长与再生的影响[J]. 草业学报, 2013, 22(1): 46-52. 
[52]  Abbott L K, Robson A D. The role of vesicular arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inoculation[J]. Australian Journal of Agricultural Research, 1982, 33: 389-408.
[53]  李羿桥, 李西, 胡庭兴.巨桉凋落叶分解对假俭草生长及光合特性的影响[J]. 草业学报, 2013, 22(3): 169-176. 浏览
[54]  李登武, 王冬梅, 余仲东. AM真菌与植物共生的生理生化效应研究进展[J]. 西北植物学报, 2002, 22(5): 1255-1262.
[55]  Wu Q S, He X H, Zou Y N, et al. Spatial distribution of glomalin-related soil protein and its relationships with root mycorrhization, soil aggregates, carbohydrates, activity of protease and β-glucosidase in the rhizosphere of Citrus unshiu[J]. Soil Biology and Biochemistry, 2012, 45: 181-183.
[56]  Rillig M C, Maestre F T, Lamit L J. Microsite differences in fungal hyphal length, glomalin, and soil aggregate stability in semiarid Mediterranean steppes[J]. Soil Biology and Biochemistry, 2003, 35: 1257-1260.
[57]  田慧, 刘晓蕾, 盖京苹, 等.球囊霉素及其作用研究进展[J]. 土壤通报, 2009, 40(5): 1215-1220.
[58]  Koide R T, Peoples M S. Behavior of Bradford-reactive substances is consistent with predictions for glomalin[J]. Applied Soil Ecology, 2013, 63: 8-14.
[59]  Piotrowski J S, Denich T, Klironomos J N, et al. The effects of arbuscular mycorrhizas on soil aggregation depend on the interaction between plant and fungal species[J]. New Phytologist, 2004, 164: 365-373.
[60]  张利刚, 曾凡江, 刘波, 等.绿洲-荒漠过渡带四种植物光合及生理特征的研究[J]. 草业学报, 2012, 21(1): 103-111. 浏览

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133