Wang Z P, Delaune R D, Lindau C W. Methane production from anaerobic soil amended with rice straw and nitrogen fertilizer. Fertilizer Research, 1992, 33: 115-121.
Varma Penmetsa R, Douglas R. Production and characterization of diverse developmental mutants of Medicago truncatula. Plant Physiologists, 2000, 123: 1387-1397.
[11]
Hessen O, gren I, Anderson R, et al. Carbon sequestration in ecosystems: The role of stoichiometry. Ecology, 2004, 85(5): 1179-1192.
[12]
Tagede M, Wen J Q, He J. Large-scale insertional mutagenesis using the Tnt1 retro transposon in the model legume Medicago truncatula. The Plant Journal, 2008, 54(13): 335-347.
Vitousek P M, Httenschwiler S, Olander L, et al. Nitrogen and nature. AMBIO, 2002, 31(2): 97-101.
[15]
Koornneeff M, Dellaert L W M, vanden Veen J H. EMS-and relation-induced mutation frequencies at individual loci in Arabidopsis thaliana (L.) Heynh. Mutation Research, 2002, 93(1): 109-123.
[16]
Cooper J L, Till B J, Laport R G, et al. TILLING to detect induced mutations in soybean. BMC Plant Biology, 2008, 8: 9-12.
[17]
Markus D, Daniel S, Almeida J P F, et al. Yield response of Lolium perenne swards to free air and CO2 enrichment increased over six years in high N input system on fertile soil. Global Change Biology, 2000, 6: 805-816.
[18]
李考学. 氮沉降对凋落物分解早期碳氮周转的影响. 哈尔滨: 东北林业大学, 2006.
[19]
Galloway J N, Levy II H, Kasibhatla P S. 2020年: 人口增长和发展对氧化氮沉降的影响. 人类环境杂志, 1994, 23(2): 120-123.
[20]
Slade A J, Fuerstenberg S I, Loeffler D, et al. A reverse genetic, nontransgetic approach to wheat crop improvement by TILLING. Nature Biotechnology, 2005, 16(23): 75-81.
Liu X J, Zhang Y, Han W X, et al. Enhanced nitrogen deposition over China. Nature, 2013, 494: 459-463.
[23]
陈秋凤. 杉木人工林林木养分和凋落物分解对模拟氮沉降的响应. 福州: 福建林业大学, 2006.
[24]
Arjun Krishnan, Gynheung An, Yue-ie C Hsing, et al. Mutant resources in rice for functional genomics of the grasses. Plant Physiology, 2009, 149: 165-170.
Lorrain S, Vailleau F, Balague C. Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants. Trends in Plant Science, 2003, 8:263-271.
Wang N, Wang Y J, Meng J L, et al. A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytologist, 2008, 180: 751-765.
Zhao Y, Wang M L, Zhang Y Z, et al. A chlorophyll-reduced seedling mutant in oilseed rape, Brassica napus for utilization in F1 hybrid production. Plant Breeding, 2000, 119(2): 131-135.
[36]
Shimel D S. Terrestrial ecosystem and the carbon cycle. Global Change Biology, 1995, 1: 77-91.
[37]
Jarvis P, Chen L J, Li H M. An Arabidopsis mutant defective in the plastid general protein import apparatus. Science, 1998, 282: 100-103.
[38]
李雪华. 大豆突变体库的初步构建及突变类型的鉴定. 南京: 南京农业大学, 2003.
[39]
Lai R. World soils and the greenhouse effect. Global Change Newsletter, 1999, 37: 4-5.
Tadege M, Wang T L. Mutagenesis and beyond! Tools for understanding legume biology. Plant Physiologists November, 2009, 151: 978-984.
[44]
Patton W J, Schimel D S, Coleand C V, et al. Analysis of factors controlling soil organic mater levels in Great Plains grasslands. Soil Science Society of America Journal, 1987, 51: 1173-1179.
Taro Fuji, Shigemitsu Tano. Mutagenic activities of EMS on somatic (M1) and recessive (M2) mutations in the soybean test system. Environment and Experimental Botany, 2006, 26(2): 191-195.