全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2014 

地下水埋深对塔里木河下游建群种植物叶片δ13C值的影响

DOI: 10.11686/cyxb20140209, PP. 76-82

Keywords: 塔里木河下游,地下水埋深,叶片δ13C值,水分利用效率

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过对塔里木河下游不同地下水埋深梯度下胡杨和柽柳叶片δ13C值的测定,分析了地下水埋深变化对胡杨和柽柳的长期水分利用效率的影响,为塔里木河下游退化生态系统植被保育和恢复提供科学依据。研究结果表明,随着地下水埋深从2.4m增加到9.1m,胡杨叶片δ13C值呈现出先升后降的趋势,且在9.1m处胡杨很可能是通过减少地上生物量的方式来适应加剧的干旱;而柽柳叶片δ13C值则随着地下水埋深的增加而逐渐增加,其水分利用效率不断增加,且对地下水埋深变化的适应宽度也较大。对比同一地下水埋深下胡杨和柽柳叶片的δ13C值发现,随着地下水埋深不断增加,胡杨的抗旱性比柽柳的弱;对比不同地下水埋深的植物叶片的δ13C值发现,胡杨在不同的地下水埋深采取不同的策略适应干旱环境,而柽柳在不同的地下水埋深则通过增加水分利用效率来抵御加剧的干旱。

References

[1]  周心澄. 紫穗槐的固沙效益. 中国沙漠, 1985, 5(1): 46-51.
[2]  梁坤伦, 姜文清, 周志宇, 等. 青藏高原紫穗槐主要形态特征变异分析. 生态学报, 2012, 32(1): 311-318.
[3]  邹丽娜, 周志宇, 颜淑云, 等. 盐分胁迫对紫穗槐幼苗生理生化特性的影响. 草业学报, 2011, 20(3): 84-90. 浏览
[4]  刘畅, 姜泓, 张建逵, 等. GC-MS法测定紫穗槐果实挥发油中的化学成分. 中华中医药学刊, 2008, 26(1): 213-214.
[5]  周艳松, 王立群, 张鹏, 等. 大针茅根系构型对草地退化的响应. 草业科学, 2011, 28(11): 1962-1966.
[6]  黄刚. 科尔沁沙地几种草本植物和灌木根系形态与分布规律. 兰州: 中国科学院寒区旱区环境与工程研究所, 2006.
[7]  Booth C A, Sanchez-Bayo F, Kin G W. Establishment of woody weeds in western New South Wales. 2. Growth and competitive potential. Rangeland Ecology & Management, 1996, 18: 80-98.
[8]  苏培玺, 严巧嫡, 陈怀顺. 荒漠植物叶片或同化枝δ13C值及水分利用效率研究. 西北植物学报, 2003, 25(4): 727-732.
[9]  Dube O P, Pickup G. Effects of rainfall variability and communal and semi-commercial grazing on land cover in southern African range lands. Applied Soil Ecology, 2001, 17(2): 195-208.
[10]  陈亚鹏, 陈亚宁, 李卫红, 等. 新疆塔里木河下游生态输水对胡杨叶片MDA含量的影响. 应用与环境生物学报, 2004, 10(4): 408-411.
[11]  冯燕, 王彦荣, 胡小文. 水分胁迫对两种荒漠灌木幼苗生长和水分利用效率的影响. 草业学报, 2011, 20(4): 293-298. 浏览
[12]  周翰儒, 耿月娥. 新疆五种旱生植物叶和同化枝解剖构造的初步研究. 安徽大学学报, 1993, 2: 66-71.
[13]  许皓, 李彦. 3种荒漠灌木的用水策略及相关的叶片生理表现. 西北植物学报, 2005, 25(7): 1309-1316.
[14]  曹生奎, 冯起, 司建华, 等. 植物叶片水分利用效率研究综述. 生态学报, 2009, 29(7): 3882-3892.
[15]  Noble J C. The delicate and noxious scrub: CSIRO studies on native tree and shrub proliferation in the semi-arid woodlands of Eastern Australia. Australian Geographical Studies, 1999, 37(3): 347-376.
[16]  D’Odorico P, Okin G S, Bestelmeyer B T. A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology, 2012, 5(5): 520-530.
[17]  余爱, 杨帆, 张宇, 等. 不同施磷浓度对柱花草和黑籽雀稗根系分布的影响. 草业学报, 2011, 20(3): 219-224.
[18]  Ling H, Phillps S L, Ehleringer J R. Monsoonal precipitation responses of shrubs in a cold desert community on Colorado Plateau. Oecologia, 1996, 106(1): 8-17.
[19]  王学臣, 任海云, 娄成后, 等. 干旱胁迫下植物根与地上部间的信号传递. 植物生理学报, 1992,(6): 397-402.
[20]  Kerley G I H, Knigh M H, DeKock M. Desertification of subtropical thicket in the Eastern Cape, South Africa: are there alternatives. Environmental Monitoring and Assessment, 1995, 37: 211-230.
[21]  任伟, 周志宇, 詹媛媛, 等. 阿拉善荒漠灌木根际中、微量元素含量特征. 生态学报, 2009, 29(7): 3759-3767.
[22]  黄建辉, 韩兴国, 陈灵芝, 等. 森林生态系统根系生物量研究进展. 生态学报, 1999, 19(2): 269-277.
[23]  胡建忠, 郑佳丽, 沈晶玉, 等. 退耕地人工植物群落根系生态位及其分布特征. 生态学报, 2005, 25(3): 481-489.
[24]  单立山, 张希明, 花永辉, 等. 塔克拉玛干沙漠腹地梭梭幼苗根系分布特征对不同灌溉量的响应. 植物生态学报, 2007, 31(5): 769-776.
[25]  Hubick K T, Farquhar G D. Carbon isotope discrimination and the ratio of carbon gained to water lost in barely cultivars. Plant Cell and Environment, 1989, 12: 795-804.
[26]  陈拓, 马健, 冯虎元, 等. 阜康典型C3植物稳定碳同位素值的环境分析. 干旱区地理, 2002, 25(4): 288-291.
[27]  Lechmere-Oertel R G, Cowling R M, Kerley G I H. Landscape dysfunction and reduced spatial heterogeneity in soil resources and fertility in semiarid succulent thicket. South Africa. Austral Ecology, 2005, 30: 615-624.
[28]  Gale M R, Gragal D E. Vertical root distribution of northern tree species in relation to successional status. Plant Ecology, 1987, 17: 829-834.
[29]  周雅姌, 陈世苹, 宋维民, 等. 不同降水条件下两种荒漠植物的水分利用策略. 植物生态学报, 2011, 35(8): 789-800.
[30]  Pregitzer K S, Deforest J L, Burton A J, et al. Fine root architecture of nine North American trees. Ecological Monographs, 2002, 72(2): 293-309.
[31]  胡宗培, 邱玉舫. 适宜盐碱地、干旱和半旱地区种植的优良灌木树种四翅滨藜. 中国水土保持, 2004, (6): 40.
[32]  Sullivan P F, Welker J M. Variation in leaf physiology of Salix arctica within and across ecology stems in the High Arctic test of a dual isotope (δ13C and △18O) conceptual model. Oeclogia, 2007, 151: 372-386.
[33]  Ratajczak Z, Nippert J B, Hartman J C, et al. Positive feedbacks amplify rates of woody encroachment in mesic tallgrass prairie. Ecosphere, 2011, 2(11): 121.
[34]  Keyes M R, Grier C C. Above and below-ground net production in 40 -year-old Douglas-fir stands on low and high productivity sites. Canadian Journal of Chemistry, 1981, 11: 599-605.
[35]  Roder J S, Farquhar G D. A controlled test of the dual-isotope approach for the interpretation of stable carbon and oxygen isotope ratio variation in tree rings. Tree Physiology, 2012, 2(4): 490-503.
[36]  Mckay H M, Malcolm D C. A comparison of the fine root component of a pure and mixed Coniferous stand. Canadian Journal of Forestry Research, 1988, 18: 1416-1426.
[37]  周梦华, 程积民孙, 万惠娥, 等. 云雾山本氏针茅群落根系分布特征. 草地学报, 2008, 16(3): 267-271.
[38]  Crstina M G, Todd E D, Emilio N, et al. Isotopes reveal contrasting water use strategies among coexisting plant species in a Mediterranean ecosystem. New Physiologist, 2012, 196: 489-496.
[39]  Tews J, Esther A, Sue J, et al. Linking a population model with an ecosystem model: Assessing the impact of land use and climate change on savanna shrub cover dynamics. Ecological Modelling, 2006, 195(3-4): 219-228.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133