Li P, Yang L L, Chen Q X, et al. Two strategies of cloning Medicago sativa phytochrome A and B genes[J]. Acta Prataculturae Sinica, 2011, 20(6): 85-92.
[3]
Li X L, Wan L Q. Alfalfa fall dormancy and its relationship to winter hardiness and yield[J]. Acta Prataculturae Sinica, 2004, 13(3): 57-61.
[4]
Hih S C, Jung G A, Shelton D C. Effects of temperature and photoperiod on metabolic changes in alfalfa in relation to cold hardiness[J]. Crop Science, 1967, 7: 385-389.
[5]
Barnes D K, Smith D M, Stucker R E, et al. Fall dormancy in alfalfa: A valuable predictive tool[A]. In: Barnes D K. Report of the 26th Alfalfa Improvement Conference[C]. Brookings. S D: South Dakota state University, 1979: 34.
[6]
Haagenson D M, Cunningham S M, Joern B C, et al. Autumn defoliation effects on alfalfa winter survival, root physiology, and gene expression[J]. Crop Science, 2003, 43: 1340-1348.
[7]
Cunningham S M, Gana J A, Volenec J J, et al. Winter hardiness, root physiology and gene expression in successive fall dormancy selections from ‘Mesilla’ and ‘CUF101’ alfalfa[J]. Crop Science, 2001, 41: 1091-1098.
[8]
Butler W L, Norris K H, Siegelman H W, et al. Detection assay and preliminary purification of the pigment controlling photorespensive development of plants[J]. Proceedings of the National Academy of Science, 1959, 58: 1703-1708.
[9]
Meng C. Phytochrome nuclear body: an emerging model to study interphase nuclear dynamics and signaling[J]. Current Opinion in Plant Biology, 2008, 11(5): 503-508.
[10]
Franklin K A, Davis S J, Stoddart W M, et al. Mutant analyses define multiple roles for phytochrome C in Arabidopsis photomorphogenesis[J]. Plant Cell, 2003, 15(9): 1981-1989.
[11]
Wang C Z, Han J F, Hu X F, et al. Regulation of PhyB and ABA on falldormancy of different Medicago sativa varieties in photeriod treatments
[12]
Acta Prataculturae Sinica, 2006, 15(6): 56-63.
[13]
Franklin K A, Whitelam G C. Light-quality regulation of freezing tolerance in Arabidopsis thaliana[J]. Nature genetics, 2007, 39: 1410-1413.
[14]
Halliday K J, Salter M G, Thingnaes E, et al. Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT[J]. Plant Journal, 2003, 33: 875-885.
[15]
Smith D. Association of fall growth habit and winter survival in alfalfa[J]. Canadian Journal of Plant Science, 1961, 41: 244-251.
[16]
Benedict C, Geisler M, Trygg J, et al. Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis[J]. Plant Physiology, 2006, 141: 1219-1232.
[17]
Fan W N, Wang C Z, Yan X B, et al. Extraction of actin gene from Medicago sativa[J]. Grassland and Turf, 2009, (1): 58-60.
[18]
Yang L L. Cloning of alfalfa phytochrome A gene using rapid amplification of cDNA ends[D]. Zhengzhou: Henan Agricultural University, 2008.
[19]
Li P. 6 kinds of thistles of alfalfa light receptor gene prediction and alfalfa phytochrome B, CRY1, CRY2, A gene cloning and analysis[D]. Zhengzhou: Henan Agricultural University, 2009.
[20]
Rossmanith P, Krassnig M, Wagner M, et al. Detection of Listeria monocytogenes in food using a combine denrichment/real-time PCR method targeting the prfA gene[J]. Research in Microbiology, 2006, 157: 763-771.
[21]
Alarcon B, Vicedo B, Aznar R. PCR- based procedures for detection and quantification of staphylococcus aureusand their application in food[J]. Journal of Applied Microbiology, 2006, 100: 352-364.
[22]
Hein I, Lehner A, Rieck P, et al. Comparison of different approaches to quantify staphylococcus aureus cells by real-time quantitative PCR and application of this technique for examination of cheese[J]. Applied and Environmental Microbiology, 2001, 67: 3122-3126.
[23]
Guilbaud M, Coppet P, Bourion F, et al. Quantitative detection of listeriamonocy to genes in biofilms by real-time PCR[J]. Applied and Environmental Microbiology, 2005, 71: 2190-2194.
[24]
Horvath D P, Anderson J V, Chao W S, et al. Knowing when to grow: signals regulating bud dormancy[J]. Trends in Plant Science, 2003, 8(11): 534-540.
[25]
Rohde A, Bhalerao R P. Plant dormancy in the perennial context[J]. Trends in Plant Science, 2007, 12(5): 217-223.
[26]
Chao W S, Foley M E, Horvath D P, et al. Signals regulating dormancy in vegetative buds[J]. International Journal of Plant Developmental Biology, 2007, 1(1): 49-56.
[27]
Dong J, Wang X M, Wang Z, et al. Cloning and analysis of dihydroflavonol rednctase (DFR) gene from Medicago sativa[J]. Acta Prataculturae Sinica, 2012, 21(2): 123-132.
[28]
Chen T T, Ynag Q C, Ding W, et al. Cloning and subcellular localization of a WRKY transcription factor gene of Medicago Sativa[J]. Acta Prataculturae Sinica, 2012, 21(4): 159-167.
[29]
Xu C B, Wang Y, Zhao H X, et al. A study on Agrobacterium tumefaciens-mediated transformation of Medicago sativa with the AtCBF1 gene[J]. Acta Prataculturae Sinica, 2012, 21(4): 168-174.
[30]
Chen T T, Yang Q C, Zhang X Q, et al. Bioinformatics and expression analyses of ethylene response factor genes in Medicago[J]. Acta Prataculturae Sinica, 2012, 21(6): 166-174.
[31]
Svendsen E, Wilen R, Stevenson R, et al. A molecular mark associated with low-temperature induction of dormancy in red osier dogwood(Cornus sericea)[J]. Tree Physiology, 2007, 27: 385-397.
[32]
Olsen J E, Junttila O, Nilsen J, et al. Ectopic expression of oat phytochrome A in hybrid aspen changes critical day length for growth and prevents cold acclimatization[J]. Plant Journal, 1997, 12(6): 1339-1350.
[33]
Wake C M F, Fennell A. Morphological, physiological and endo-dormancy responses of three Vitis genotypes to short photoperiod[J]. Biologia Plantarum, 2000, 109: 203-210.
[34]
Eriksson M. Low levels of phytochrome A expression alters circadian rhythm and change levels of FLOWERING LOCUS T leading to early bud set in hybrid aspen[J]. Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology, 2007, 46: S231-S1231.
[35]
Quail P H. Phytochrome-regulated gene expression[J]. Integra Plant Biology, 2007, 49: 11-20.
[36]
Kuhn N, Ormeno N J, Jaque Z G, et al. Photoperiod modifies the diurnal expression profile of VvA and VvB transcripts in field-grown grapevine leaves[J]. Journal of Plant Physiology, 2009, 166(15): 1172-1180.
[37]
Horvath D P, Chao W S, Suttle J C, et al. Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge(Euphorbia esula)[J]. BMC Genomics, 2008, 9: 536.
[38]
Duan C G, Liu H F, Li X L. Endogenous hormone regulation of deciduous fruit pavilions bud dormancy[J]. Hebei Fruits, 2005, (2): 27-40.
[39]
Khm^A. Seed dormancy and germination of physiological changes [M]. Wang C S, Hong T B, translation, Beijing: agriculture press, 1989: 52-59.
[40]
Tong Z,. Phytochrome and Photomorphogenesis [A] See: Yu S W. Plant Physiology and Molecular Biology (2nd edition) [M]. Beijing: Science Press, 1998: 633-653.
[41]
Tong Z, Zhao Y J, Wang T, et al. Photoreceptors and light-regulated development in plants[J] Journal of Integrative Plant Biology, 2000, 42: 111-115.
[42]
Franklin K A. Light and temperature signal crosstalk in plant development[J]. Science Direct, 2009, 12(1): 63-68.
[43]
Heschel M S, Selby J, Butler C, et al. A new role for phytochromes in temperature-dependent germination[J]. New Phytolist, 2007, 174: 735-741.
[44]
Horvath D. Common mechanisms regulate flowering and dormancy[J]. Plant Science, 2009, 177: 523-531.
[45]
Yuan J, Wu T L, Chen D. Effects of photoperiodic treatment on the endogenous hormones and dissociative amino acid of hyacinth bean leaves[J]. Journal of Shanghai Jiaotong University(Agricultural Science), 2004, 22(3): 215-226.
[46]
Han T F, Ma F M, Wang J L, et al. Photoperiodic effects on the amount and balance of endogenous hormones in soybean leaves[J]. Photoperiodic Effects on the Amount and Balance of Endogenous Hormones in Soybean Leaves, 1996, 22(6): 661-667.
[47]
Mazzella M A, Arana M V, Staneloni R J, et al. Phytochrome control of the Arabidopsis transcriptome anticipates seedling exposure to light[J]. Plant Cell, 2005, 17: 2507-2516.
[48]
Seo M, Hanada A, Kuwahara A, et al. Regulation of hormone metabolism in arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism[J]. Plant Journal, 2006, 48(3): 354-366.
Hih S C, Jung G A, Shelton D C. Effects of temperature and photoperiod on metabolic changes in alfalfa in relation to cold hardiness[J]. Crop Science, 1967, 7: 385-389.
[53]
Barnes D K, Smith D M, Stucker R E,et al. Fall dormancy in alfalfa: A valuable predictive tool[A]. In: Barnes D K. Report of the 26th Alfalfa Improvement Conference[C]. Brookings. S D: South Dakota state University, 1979: 34.
[54]
Haagenson D M, Cunningham S M, Joern B C,et al. Autumn defoliation effects on alfalfa winter survival, root physiology, and gene expression[J]. Crop Science, 2003, 43: 1340-1348.
[55]
Cunningham S M, Gana J A, Volenec J J,et al. Winter hardiness, root physiology and gene expression in successive fall dormancy selections from ‘Mesilla’ and ‘CUF101’ alfalfa[J]. Crop Science, 2001, 41: 1091-1098.
[56]
Butler W L, Norris K H, Siegelman H W,et al. Detection assay and preliminary purification of the pigment controlling photorespensive development of plants[J]. Proceedings of the National Academy of Science, 1959, 58: 1703-1708.
[57]
Meng C. Phytochrome nuclear body: an emerging model to study interphase nuclear dynamics and signaling[J]. Current Opinion in Plant Biology, 2008, 11(5): 503-508.
[58]
Franklin K A, Davis S J, Stoddart W M,et al. Mutant analyses define multiple roles for phytochrome C in Arabidopsisphotomorphogenesis[J]. Plant Cell, 2003, 15(9): 1981-1989.
Franklin K A, Whitelam G C. Light-quality regulation of freezing tolerance in Arabidopsis thaliana[J]. Nature genetics, 2007, 39: 1410-1413.
[61]
Halliday K J, Salter M G, Thingnaes E,et al. Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT[J]. Plant Journal, 2003, 33: 875-885.
[62]
Smith D. Association of fall growth habit and winter survival in alfalfa[J]. Canadian Journal of Plant Science, 1961, 41: 244-251.
[63]
Benedict C, Geisler M, Trygg J,et al. Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis[J]. Plant Physiology, 2006, 141: 1219-1232.
Rossmanith P, Krassnig M, Wagner M,et al. Detection of Listeria monocytogenes in food using a combine denrichment/real-time PCR method targeting the prfA gene[J]. Research in Microbiology, 2006, 157: 763-771.
[68]
Alarcon B, Vicedo B, Aznar R. PCR-based procedures for detection and quantification of staphylococcus aureusand their application in food[J]. Journal of Applied Microbiology, 2006, 100: 352-364.
[69]
Hein I, Lehner A, Rieck P,et al. Comparison of different approaches to quantify staphylococcus aureus cells by real-time quantitative PCR and application of this technique for examination of cheese[J]. Applied and Environmental Microbiology, 2001, 67: 3122-3126.
[70]
Guilbaud M, Coppet P, Bourion F,et al. Quantitative detection of listeriamonocy to genes in biofilms by real-time PCR[J]. Applied and Environmental Microbiology, 2005, 71: 2190-2194.
[71]
Horvath D P, Anderson J V, Chao W S,et al. Knowing when to grow: signals regulating bud dormancy[J]. Trends in Plant Science, 2003, 8(11): 534-540.
[72]
Rohde A, Bhalerao R P. Plant dormancy in the perennial context[J]. Trends in Plant Science, 2007, 12(5): 217-223.
[73]
Chao W S, Foley M E, Horvath D P,et al. Signals regulating dormancy in vegetative buds[J]. International Journal of Plant Developmental Biology, 2007, 1(1): 49-56.
Svendsen E, Wilen R, Stevenson R,et al. A molecular mark associated with low-temperature induction of dormancy in red osier dogwood(Cornus sericea)[J]. Tree Physiology, 2007, 27: 385-397.
[79]
Olsen J E, Junttila O, Nilsen J,et al. Ectopic expression of oat phytochrome A in hybrid aspen changes critical day length for growth and prevents cold acclimatization[J]. Plant Journal, 1997, 12(6): 1339-1350.
[80]
Wake C M F, Fennell A. Morphological, physiological and endo-dormancy responses of three Vitis genotypes to short photoperiod[J]. Biologia Plantarum, 2000, 109: 203-210.
[81]
Eriksson M. Low levels of phytochrome A expression alters circadian rhythm and change levels of FLOWERING LOCUS T leading to early bud set in hybrid aspen[J]. Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology, 2007, 46: S231-S1231.
[82]
Quail P H. Phytochrome-regulated gene expression[J]. Integra Plant Biology, 2007, 49: 11-20.
[83]
Kuhn N, Ormeno N J, Jaque Z G,et al. Photoperiod modifies the diurnal expression profile of VvA and VvB transcripts in field-grown grapevine leaves[J]. Journal of Plant Physiology, 2009, 166(15): 1172-1180.
[84]
Horvath D P, Chao W S, Suttle J C,et al. Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge(Euphorbia esula)[J]. BMC Genomics, 2008, 9: 536.
Mazzella M A, Arana M V, Staneloni R J,et al. Phytochrome control of the Arabidopsis transcriptome anticipates seedling exposure to light[J]. Plant Cell, 2005, 17: 2507-2516.
[95]
Seo M, Hanada A, Kuwahara A,et al. Regulation of hormone metabolism in arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism[J]. Plant Journal, 2006, 48(3): 354-366.