全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2014 

两种类型垫状植物对土壤微环境修饰作用的比较

DOI: 10.11686/cyxb20140115, PP. 123-130

Keywords: 垫状植物,囊种草,垫状驼绒藜,土壤微环境

Full-Text   Cite this paper   Add to My Lib

Abstract:

在海拔3762m的高寒荒漠地带,以紧实型垫状植物囊种草和松散型垫状植物垫状驼绒藜作为研究对象,每种垫状植物选取9个直径约50cm的垫状植丛,分别测定植丛覆盖下土壤的养分、物理结构、水分和温度等指标,并以邻近无垫状植物生长区域的土壤为对照,试图揭示2种类型垫状植物对其覆盖下土壤微环境的改变。研究结果表明,2种垫状植物均提高了其冠层下土壤的养分含量,囊种草覆盖下土壤的有机质、全氮、速效氮、速效磷和速效钾含量分别比对照提高了27.91%(P>0.05),12.02%(P>0.05),107.38%(P<0.01),63.74%(P<0.01)和22.36%(P<0.01);垫状驼绒藜覆盖下土壤的速效磷、全磷、速效氮、速效钾和全钾含量分别比对照提高了12.24%(P>0.05),3.68%(P>0.05),55.42%(P<0.05),4.6%(P<0.05)和2.89%(P<0.05)。同时,2种垫状植物均改善了其覆盖下土壤的物理结构,囊种草和垫状驼绒藜分别降低了土壤容重达15.34%和7.45%,且降低程度在两者间差异显著(P<0.05)。囊种草和垫状驼绒藜覆盖下土壤的非毛管孔隙度、毛管孔隙度、总孔隙度和土壤通气度分别比对照提高了87.73%和60.04%,29.79%和15.40%,34.04%和20.37%,80.55%和54.80%。其中,2种垫状植物对土壤非毛管孔隙度和土壤通气度的改善最为显著。此外,2种垫状植物也不同程度地提高了其覆盖下土壤的各水分条件指标,其中,对滞留贮水量的提高程度最大,囊种草和垫状驼绒藜分别将其提高了87.73%和60.04%,其次是最大持水量,分别提高了58.50%和29.88%,毛管持水量分别提高了53.45%和27.20%,最小持水量提高了47.66%和25.51%,2种垫状植物对土壤含水量的提高程度最小,分别提高了14.76%和3.66%。并且,2种垫状植物均提高了土壤的最低温度,并降低了土壤的最高温度,使其覆盖下的土壤维持在一个较为固定的温度范围内。结果表明,2种垫状植物均不同程度地改善了土壤微环境,对于土壤微环境的修饰作用均表现为紧实型垫状植物囊种草优于松散型垫状植物垫状驼绒藜,说明紧密的垫状结构是垫状植物修饰土壤微环境的主要原因。

References

[1]  河北省土壤肥料总站. 土壤速效氮的测定 DB13 T 843- 2007[S]. 石家庄: 河北省质量技术监督局, 2007.
[2]  Reference:
[3]  Arroyo M T K, Cavieres L A, Penaloza A, et al. Positive association between the cushion plant Azorella monantha(Apiaceae) and alpine plant species in the Chilean Patagonian Andes[J]. Plant Ecology, 2003, 161: 121-129.
[4]  Krner Ch. Alpine Plant Life (2nd Ed)[M]. Berlin: Springer Press, 2003.
[5]  Cavieres L A, Quiroz C L, Molina-Montenegro M A, et al. Nurse effect of the native cushion plant Azorella monanthaon the invasive non-native Taraxacum officinale in the high-Andes of central Chile[J]. Perspectives in Plant Ecology Evolution and Systematics, 2005, 7: 217-226.
[6]  Badano E I, Jones C G, Cavieres L A, et al. Assessing impacts of ecosystem engineers on community organization: A general approach illustrated by effects of a high-Andean cushion plant[J]. Oikos, 2006, 115: 369-385.
[7]  Badano E I, Cavieres L A. Ecosystem engineering across ecosystems: do engineer species sharing common features have generalized or idiosyncratic effects on species diversity[J]. Journal of Biogeography, 2006, 33: 304-313.
[8]  Cavieres L A, Badano E I, Sierra-Almeidaand A, et al. Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the high Andes of central Chile[J]. Arctic Antarctic and Alpine Research, 2007, 39: 229-236.
[9]  Li B S, Wang J T, Li S Y. The floristic features and geographic distribution of the cushion plants in Xizang[J]. Mountain Research, 1987, 5(1): 14-20.
[10]  Huang R F. The cushion plant in the hoh xil area of Qinghai[J]. Acta Botanica Sinica, 1994, 36(2): 130-137.
[11]  Huang R F, Wang W Y. Cushion plants flora of the qinghai-tibet plateau, and cushion plant community succession[J]. Acta Biologica Plateau Sinica, 1991, (10): 15-26.
[12]  Li B S, Zhang J W, Wang J T, et al. The alpine cushion vegetation of Tibet[J]. Journal of Integrative Plant Biology, 1985, 27(3): 311-317.
[13]  Qin Z Y, Xie W Z. Observations on the morphology and ecology of the cushion plants in togme region of northern Tibet[J]. Journal of Integrative Plant Biology, 1980, 22(2): 177-181.
[14]  Zhang S Y, Bai X F, Ma Z Y. Comparison of three cushion plants physiological basis of cold[J]. Acta Biologica Plateau Sinica, 1987,(6): 165-170.
[15]  Wang W Y, Huang R F. The most intensive cushion plant anatomy and its relationship with ecological environment analysis[J]. Acta Biologica Plateau Sinica, 1991, (10): 27-37.
[16]  Krner Ch, De Moraes J. Water potential and diffusion resistance in alpine cushion plants on clear summer days[J]. Oecologia Plantarum, 1979, 14: 109-120.
[17]  Cavieres L A, Penaloza A P G, Papic C, et al. Efecto nodriza de Laretia acaulis en plantas de la zona andina de Chile central[J]. Revista Chilena de Historia Natural, 1998, 71: 337-347.
[18]  Cavieres L A, Badano E I, Sierra-Almeida A, et al. Positive interactions between alpine plant species and the nurse cushion plant Laretia acaulis do not increase with elevation in the Andes of central Chile[J]. New Phytologist, 2006, 169: 59-69.
[19]  Núez C, Aizen M, Ezcurra C. Species associations and nurse plant effect in patches of high-Andean vegetation[J]. Journal of Vegetation Science, 1999, 10: 357-364.
[20]  Hager J, Faggi A M. Observaciones sobre distribución ymicroclima de cojines enanos de la isla de Cretay del noroeste de la Patagonia[J]. Parodiana, 1990, 6: 109-127.
[21]  Qian Y R, Yang F, Yu J, et al. Vegetation index feature and spatial-temporal process analysis of desert grassland in the Fukang area of Xinjiang[J]. Acta Prataculturae Sinica, 2013, 22(3): 25-32.
[22]  He Y T, Shi P L, Yan W. Ecosystem engineering of cushion plants in alpine plant community :A review[J]. Chinese Journal of Ecology, 2010, 29(6): 1221-1227. 
[23]  Qin Z Y, Xie W Z. Observations on the morphology and ecology of the cushion plants in togme region of northern Tibet[J]. Journal of Integrative Plant Biology, 1980, 22(2): 177-181.
[24]  Feng Q S, Xiu L N, Liang T G. Distribution of the existing natural vegetation in China based on CSCS[J]. Acta Prataculturae Sinica, 2013, 22(3): 16-24.
[25]  Francesco de Bello, Jiǐí Doleal, Miroslav Dvorsk, et al. Cushions of Thylacospermum caespitosum(Caryophyllaceae) do not facilitate other plants under extreme altitude and dry conditions in the north-west Himalayas[J]. Annals of Botany, 2011, 108: 567-573.
[26]  Flora of China Editorial Committee of Chinese Academy of Sciences. Flora of China(26Volume)[M]. Beijing: Science Press, 1997: 251.
[27]  Flora of China Editorial Committee of Chinese Academy of Sciences. Flora of China(26Volume)[M]. Beijing: Science Press,, 1997: 28.
[28]  Liu N F, Zhang H C, Dou Z G. Synthetical Scientific Investigation on Yanchiwan Nationalreserve in Gansu Province[M]. Lanzhou: Lanzhou University Press, 2010.
[29]  Chinese Academy of Forestry Research Institute of Forestry forest soil. Collection and preparation of forest soil samples LY / T 1210-1999[S]. Beijing: China Standard Press, 1999.
[30]  Chinese Academy of Forestry Research Institute of Forestry forest soil. Determination of forest soil nitrogen LY / T 1228-1999[S]. Beijing: China Standard Press, 1999.
[31]  Chinese Academy of Forestry Research Institute of Forestry forest soil. Determination of total phosphorus in forest soil LY / T 1232-1999[S]. Beijing: China Standard Press, 1999.
[32]  Chinese Academy of Forestry Research Institute of Forestry forest soil. Determination of forest soil total potassium LY / T 1234-1999[S]. Beijing: China Standard Press, 1999.
[33]  Chinese Academy of Forestry Research Institute of Forestry forest soil. Determination of forest soil K LY / T 1236-1999[S]. Beijing: China Standard Press, 1999.
[34]  Soil and Fertilizer Station of Hebei Province. Determination of soil available nitrogen DB13 T 843- 2007[S]. Shijiazhuan: Quality and Technical Supervision, Hebei Province, 2007.
[35]  Chinese Academy of Forestry Research Institute of Forestry forest soil. Determination of forest soil available phosphorus LY / T 1233-1999[S]. Beijing: China Standard Press, 1999.
[36]  Chinese Academy of Forestry Research Institute of Forestry forest soil. Determination of forest soil organic matter is calculated and carbon-nitrogen ratio of LY / T 1237-1999[S]. Beijing: China Standard Press, 1999.
[37]  Chinese Academy of Forestry Research Institute of Forestry forest soil. Forest soil moisture - physical property measurements LY / T 1215-1999[S]. Beijing: China Standard Press, 1999.
[38]  Li H, Fan S F, Zhang G C, et al. Characteristics of soil water-holding and soil porosity under different tree species after conversion of cropland to forest in the loss hilly region[J]. Bulletin of Soil and Water Conservation, 2010, 30(1): 27-30.
[39]  Cavieres L A, Arroyo M T K, Penaloza A, et al. Nurse effect of Bolax gummifera cushion plants in the alpine vegetation of the Chilean Patagonian Andes[J]. Journal of Vegetation Science, 2002, 13: 547-554.
[40]  Belsky A J. Influences of trees on savanna productivity: tests of shade, nutrient and tree-grass competition[J]. Ecology, 1994, 75: 922-932.
[41]  Schlesinger W H, Raikes J A, Hartley A E, et al. On the spatial pattern of soil nutrients in desert ecosystems[J]. Ecology, 1996, 77:364-374.
[42]  Schlesinger W H, Reynolds J F, Cunningham G L, et al. Biological feedbacks in global desertification[J]. Science, 1990, 247: 1043-1048.
[43]  Ridolfi L, Laio F, D’Odorico D. Fertility island formation and evolution in dryland ecosystems[J]. Ecology and Society, 2008, 13(1): 5-17.
[44]  Yu F Z, Li B J, You H M, et al. Study on spatial-temporal changes on undergrowth the plantation bullk density and soil porpsity of Quanshan nature reserve in Xuzhou[J]. Research of Soil and Water Conservation, 2007, 14(6): 164-166.
[45]  Wang S C, Wang Y L, Xu H, et al. Soil physical-chemistry characteristic and correlation analysis of different vegetation restoration modes in semiarid hilly and gully region[J]. Acta Agriculturae Boreall-occidentalis Sinica, 2009, 18(1): 295-299.
[46]  Forbis T A. Seedling demography in an alpine ecosystem[J]. American Journal of Botany, 2003, 90: 1197-1206.
[47]  参考文献:
[48]  Arroyo M T K, Cavieres L A, Penaloza A,et al. Positive association between the cushion plant Azorella monantha (Apiaceae) and alpine plant species in the Chilean Patagonian Andes[J]. Plant Ecology, 2003, 161: 121-129.
[49]  Krner Ch. Alpine Plant Life (2nd Ed)[M]. Berlin: Springer Press, 2003.
[50]  Cavieres L A, Quiroz C L, Molina-Montenegro M A,et al. Nurse effect of the native cushion plant Azorella monantha on the invasive non-native Taraxacum officinale in the high-Andes of central Chile[J]. Perspectives in Plant Ecology Evolution and Systematics, 2005, 7: 217-226.
[51]  Badano E I, Jones C G, Cavieres L A,et al. Assessing impacts of ecosystem engineers on community organization: A general approach illustrated by effects of a high-Andean cushion plant[J]. Oikos, 2006, 115: 369-385.
[52]  Badano E I, Cavieres L A. Ecosystem engineering across ecosystems: do engineer species sharing common features have generalized or idiosyncratic effects on species diversity[J]. Journal of Biogeography, 2006, 33: 304-313.
[53]  Cavieres L A, Badano E I, Sierra-Almeidaand A,et al. Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the high Andes of central Chile[J]. Arctic Antarctic and Alpine Research, 2007, 39: 229-236.
[54]  李渤生, 王金亭, 李世英. 西藏座垫植物的区系特点及地理分布[J]. 山地研究, 1987, 5(1): 14-20.
[55]  黄荣福. 青海可可西里地区垫状植物[J]. 植物学报, 1994, 36(2): 130-137.
[56]  黄荣福, 王为义. 青藏高原垫状植物区系及垫状植物群落演替[J]. 高原生物学集刊, 1991, (10): 15-26.
[57]  李渤生, 张经炜, 王金亭, 等. 西藏的高山座垫植被[J]. 植物学报, 1985, 27(3): 311-317.
[58]  秦志业, 谢文忠. 藏北土门地区垫状植物的形态与生态观察[J]. 植物学报, 1980, 22(2): 177-181.
[59]  张树源, 白雪芳, 马章英. 三种垫状植物基础抗寒生理的比较[J]. 高原生物学集刊, 1987, (6): 165-170.
[60]  王为义, 黄荣福. 最密集型垫状植物的解剖特征及其与生态环境关系的分析[J]. 高原生物学集刊, 1991, (10): 27-37.
[61]  Krner Ch, De Moraes J. Water potential and diffusion resistance in alpine cushion plants on clear summer days[J]. Oecologia Plantarum, 1979, 14: 109-120.
[62]  Cavieres L A, Penaloza A P G, Papic C,et al. Efecto nodriza de Laretia acaulis en plantas de la zona andina de Chile central[J]. Revista Chilena de Historia Natural, 1998, 71: 337-347.
[63]  Cavieres L A, Badano E I, Sierra-Almeida A,et al. Positive interactions between alpine plant species and the nurse cushion plant Laretia acaulis do not increase with elevation in the Andes of central Chile[J]. New Phytologist, 2006, 169: 59-69.
[64]  Núez C, Aizen M, Ezcurra C. Species associations and nurse plant effect in patches of high-Andean vegetation[J]. Journal of Vegetation Science, 1999, 10: 357-364.
[65]  Hager J, Faggi A M. Observaciones sobre distribución ymicroclima de cojines enanos de la isla de Cretay del noroeste de la Patagonia[J]. Parodiana, 1990, 6: 109-127.
[66]  钱育蓉, 杨峰, 于炯, 等. 新疆阜康荒漠植被指数特征和时空过程分析[J]. 草业学报, 2013, 22(3): 25-32. 浏览
[67]  何永涛, 石培礼, 闫巍. 高山垫状植物的生态系统工程师效应研究进展[J]. 生态学杂志, 2010, 29(6): 1221-1227. 
[68]  秦志业, 谢文忠. 藏北土门地区垫状植物的形态与生态观察[J]. 植物学报, 1980, 22(2): 177-181.
[69]  冯琦胜, 修丽娜, 梁天刚. 基于CSCS 的中国现存自然植被分布研究[J]. 草业学报, 2013, 22(3): 16-24. 浏览
[70]  Francesco de Bello, Jiǐí Doleal, Miroslav Dvorsk,et al. Cushions of Thylacospermum caespitosum (Caryophyllaceae) do not facilitate other plants under extreme altitude and dry conditions in the north-west Himalayas[J]. Annals of Botany, 2011, 108: 567-573.
[71]  中国科学院中国植物志编辑委员会. 中国植物志(26卷)[M]. 北京: 科学出版社, 1997: 251.
[72]  中国科学院中国植物志编辑委员会. 中国植物志(25卷)[M]. 北京: 科学出版社, 1997: 28.
[73]  刘迺发, 张惠昌, 窦志刚. 甘肃盐池湾国家级自然保护区综合科学考察[M]. 兰州: 兰州大学出版社, 2010.
[74]  中国林业科学研究院林业研究所森林土壤研究室. 森林土壤样品的采集与制备 LY/T 1210-1999[S]. 北京: 中国标准出版社, 1999.
[75]  中国林业科学研究院林业研究所森林土壤研究室. 森林土壤全氮测定 LY/T 1228-1999[S]. 北京: 中国标准出版社, 1999.
[76]  中国林业科学研究院林业研究所森林土壤研究室. 森林土壤全磷测定 LY/T 1232-1999[S]. 北京: 中国标准出版社, 1999.
[77]  中国林业科学研究院林业研究所森林土壤研究室. 森林土壤全钾测定 LY/T 1234-1999[S]. 北京: 中国标准出版社, 1999.
[78]  中国林业科学研究院林业研究所森林土壤研究室. 森林土壤速效钾的测定 LY/T 1236-1999[S]. 北京: 中国标准出版社, 1999.
[79]  中国林业科学研究院林业研究所森林土壤研究室. 森林土壤速效磷的测定 LY/T 1233-1999[S]. 北京: 中国标准出版社, 1999.
[80]  中国林业科学研究院林业研究所森林土壤研究室. 森林土壤有机质的测定及碳氮比的计算 LY/T 1237-1999[S]. 北京: 中国标准出版社, 1999.
[81]  中国林业科学研究院林业研究所森林土壤研究室. 森林土壤水分-物理性质测定 LY/T 1215-1999[S]. 北京: 中国标准出版社, 1999.
[82]  李红, 范素芳, 张光灿, 等. 黄土丘陵区退耕还林后不同林地土壤空隙与贮水特性[J]. 水土保持通报, 2010, 30(1): 27-30.
[83]  Cavieres L A, Arroyo M T K, Penaloza A,et al. Nurse effect of Bolax gummifera cushion plants in the alpine vegetation of the Chilean Patagonian Andes[J]. Journal of Vegetation Science, 2002, 13: 547-554.
[84]  Belsky A J. Influences of trees on savanna productivity: tests of shade, nutrient and tree-grass competition[J]. Ecology, 1994, 75: 922-932.
[85]  Schlesinger W H, Raikes J A, Hartley A E,et al. On the spatial pattern of soil nutrients in desert ecosystems[J]. Ecology, 1996, 77:364-374.
[86]  Schlesinger W H, Reynolds J F, Cunningham G L,et al. Biological feedbacks in global desertification[J]. Science, 1990, 247: 1043-1048.
[87]  Ridolfi L, Laio F, D’Odorico D. Fertility island formation and evolution in dryland ecosystems[J]. Ecology and Society, 2008, 13(1): 5-17.
[88]  于法展, 李保杰, 尤海梅, 等. 徐州泉山自然保护区人工林下土壤容重与孔隙度时空变化研究[J]. 水土保持研究, 2007, 14(6): 164-166.
[89]  王思成, 王月玲, 许浩, 等.半干旱黄土丘陵地区不同植被恢复方式下土壤理化特性及相关分析[J]. 西北农业学报, 2009, 18(1): 295-299.
[90]  Forbis T A. Seedling demography in an alpine ecosystem[J]. American Journal of Botany, 2003, 90: 1197-1206.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133