Qi Y Q. Research of Cotton canopy characteristic information by using hyperspectral remote sensing data[D]. Shihezi: Shihezi University, 2006.
[3]
Ma Q J. Research of crop canopy structural parameters by using hyperspectral vegetation indices of cotton[D]. Shihezi: Shihezi University, 2008.
[4]
Qian Y R, Yu J, Jia Z H, et al. Extraction and analysis of hyper-spectral data from typical desert grassland in Xinjiang[J]. Acta Prataculturae Sinica, 2013, 22(1): 157-166.
[5]
Kawamura K, Watanabe N, Sakanoue S, et al. Waveband selection using a phased regression with a bootstrap procedure for estimating legume content in a mixed sown pasture[J]. Grassland Science, 2011, 57(2): 81-93.
[6]
Zhao D, Starks P J, Brown M A, et al. Assessment of forage biomass and quality parameters of bermudagrass using proximal sensing of pasture canopy reflectance[J]. Grassland Science, 2007, 53(1): 39-49.
[7]
Mutanga O, Skidmore A K, Prins H H T. Predicting in situ pasture quality in the Kruger National Park, South Africa using continuum removed absorption features[J]. Remote Sensing of Environment, 2004, 89(3): 393-408.
[8]
Post C J, Degloria S D, Cherney J H, et al. Spectral measurements of alfalfa/grass fields related to forage properties and species composition[J]. Plant Nutrition, 2007, 30(11): 1779-1789.
[9]
Zhang K, Wang R Y, Wang X P, et al. Hyperspectral remote sensing estimation models for aboveground fresh biomass of spring wheat on Loess Plateau[J]. Chinese Journal of Ecology, 2009, 28(6): 1155-1161.
[10]
Zhang K, Guo N, Wang R Y, et al. Hyperspectral remote sensing estimation models for aboveground fresh biomass in Gannan grassland[J]. Pratacultural Science, 2009, 26(11):44-50.
[11]
Yang H L, Chen G, Wu J F. Plant nitrogen content of annual ryegrass and spectral reflectance response to nitrogen application level[J]. Acta Prataculturae Sinica, 2011, 20(3): 239-244.
[12]
Na Q. Hyperspectral and nutrition of Medicago Sativa L and Bromus Cilitus L. correlation research[D]. Hohhot: Inner Mongolia Agricultural University, 2010.
[13]
Zhou Y T, Fu G, Shen Z X, et al. Estimation model of aboveground biomass in the Northern Tibet Plateau based on remote sensing date[J]. Acta Prataculturae Sinica, 2013, 22(1): 120-129.
[14]
Zhang Y N, Niu J M, Zhang Q, et al. A discussion on applications of vegetation index for estimating aboveground biomass of typical steppe[J]. Acta Prataculturae Sinica, 2012, 21(1): 229-238.
[15]
Pu R L, Gong P. Hyperspectral Remote Sensing and Its Applications[M]. Beijing:Higher Education Press, 2000: 52-53.
[16]
Ma Q J, Wang D W, Huang C Y, et al. Hyperspectral estimating modelings of cotton Lai and the above-ground dry matter accumulation[J]. Cotton Science, 2008, 20(3): 217-222.
[17]
Huang C Y, Wang D W, Cao L P, et al. Models for estimating cotton aboveground fresh biomass using hyperspectral data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(3):131-135.
[18]
Bai J H, Li S K, Wang K R, et al. Estimation models of cotton aboveground fresh biomass based on field hyperspectral remote sensing[J]. Acta Agronomica Sinica, 2007, 33(2): 311-316.
[19]
Tan C W, Wang J H, Huang W J, et al. Study on spectral variation of Ltn, Chl and LaI of summer maize[J]. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(6):1041-1046.
Kawamura K, Watanabe N, Sakanoue S,et al. Waveband selection using a phased regression with a bootstrap procedure for estimating legume content in a mixed sown pasture[J]. Grassland Science, 2011, 57(2): 81-93.
[25]
Zhao D, Starks P J, Brown M A,et al. Assessment of forage biomass and quality parameters of bermudagrass using proximal sensing of pasture canopy reflectance[J]. Grassland Science, 2007, 53(1): 39-49.
[26]
Mutanga O, Skidmore A K, Prins H H T. Predicting in situ pasture quality in the Kruger National Park, South Africa using continuum removed absorption features[J]. Remote Sensing of Environment, 2004, 89(3): 393-408.
[27]
Post C J, Degloria S D, Cherney J H,et al. Spectral measurements of alfalfa/grass fields related to forage properties and species composition[J]. Plant Nutrition, 2007, 30(11): 1779-1789.