全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2014 

苜蓿人工草地高光谱遥感估产模型的研究

DOI: 10.11686/cyxb20140111, PP. 84-91

Keywords: 苜蓿,品种,鲜草产量,高光谱遥感,回归模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

实地测量了10个苜蓿品种在不同生长时期的冠层高光谱数据,用以消除不同品种间光谱的差异性,并以多个波段的反射率、一阶导数和多种光谱吸收特征参数为光谱参数,运用多种单变量回归模型,对人工苜蓿草地的鲜草产量进行了估算。结果表明,复合、指数等非线性模型要优于线性模型,在同类型的光谱参数中,线性模型决定系数高的参数,其二次型、三次型多项式和复合、乘幂、指数等非线性回归模型的决定系数通常也比较高,且通常高于线性模型;诸多估算模型中,以747nm处一阶导数为自变量的复合、指数2种形式的估算模型,其相关系数最高为r=0.852,均方根误差为0.466kg/m2,相对误差为21.14%,其估算精度最高,可作为多个苜蓿品种统一使用的鲜草产量高光谱估算模型。

References

[1]  Reference:
[2]  Qi Y Q. Research of Cotton canopy characteristic information by using hyperspectral remote sensing data[D]. Shihezi: Shihezi University, 2006. 
[3]  Ma Q J. Research of crop canopy structural parameters by using hyperspectral vegetation indices of cotton[D]. Shihezi: Shihezi University, 2008. 
[4]  Qian Y R, Yu J, Jia Z H, et al. Extraction and analysis of hyper-spectral data from typical desert grassland in Xinjiang[J]. Acta Prataculturae Sinica, 2013, 22(1): 157-166. 
[5]  Kawamura K, Watanabe N, Sakanoue S, et al. Waveband selection using a phased regression with a bootstrap procedure for estimating legume content in a mixed sown pasture[J]. Grassland Science, 2011, 57(2): 81-93. 
[6]  Zhao D, Starks P J, Brown M A, et al. Assessment of forage biomass and quality parameters of bermudagrass using proximal sensing of pasture canopy reflectance[J]. Grassland Science, 2007, 53(1): 39-49. 
[7]  Mutanga O, Skidmore A K, Prins H H T. Predicting in situ pasture quality in the Kruger National Park, South Africa using continuum removed absorption features[J]. Remote Sensing of Environment, 2004, 89(3): 393-408. 
[8]  Post C J, Degloria S D, Cherney J H, et al. Spectral measurements of alfalfa/grass fields related to forage properties and species composition[J]. Plant Nutrition, 2007, 30(11): 1779-1789. 
[9]  Zhang K, Wang R Y, Wang X P, et al. Hyperspectral remote sensing estimation models for aboveground fresh biomass of spring wheat on Loess Plateau[J]. Chinese Journal of Ecology, 2009, 28(6): 1155-1161. 
[10]  Zhang K, Guo N, Wang R Y, et al. Hyperspectral remote sensing estimation models for aboveground fresh biomass in Gannan grassland[J]. Pratacultural Science, 2009, 26(11):44-50.
[11]  Yang H L, Chen G, Wu J F. Plant nitrogen content of annual ryegrass and spectral reflectance response to nitrogen application level[J]. Acta Prataculturae Sinica, 2011, 20(3): 239-244. 
[12]  Na Q. Hyperspectral and nutrition of Medicago Sativa L and Bromus Cilitus L. correlation research[D]. Hohhot: Inner Mongolia Agricultural University, 2010. 
[13]  Zhou Y T, Fu G, Shen Z X, et al. Estimation model of aboveground biomass in the Northern Tibet Plateau based on remote sensing date[J]. Acta Prataculturae Sinica, 2013, 22(1): 120-129. 
[14]  Zhang Y N, Niu J M, Zhang Q, et al. A discussion on applications of vegetation index for estimating aboveground biomass of typical steppe[J]. Acta Prataculturae Sinica, 2012, 21(1): 229-238. 
[15]  Pu R L, Gong P. Hyperspectral Remote Sensing and Its Applications[M]. Beijing:Higher Education Press, 2000: 52-53. 
[16]  Ma Q J, Wang D W, Huang C Y, et al. Hyperspectral estimating modelings of cotton Lai and the above-ground dry matter accumulation[J]. Cotton Science, 2008, 20(3): 217-222. 
[17]  Huang C Y, Wang D W, Cao L P, et al. Models for estimating cotton aboveground fresh biomass using hyperspectral data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(3):131-135. 
[18]  Bai J H, Li S K, Wang K R, et al. Estimation models of cotton aboveground fresh biomass based on field hyperspectral remote sensing[J]. Acta Agronomica Sinica, 2007, 33(2): 311-316. 
[19]  Tan C W, Wang J H, Huang W J, et al. Study on spectral variation of Ltn, Chl and LaI of summer maize[J]. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(6):1041-1046.
[20]  参考文献:
[21]  祁亚琴. 基于高光谱数据提取棉花冠层特征信息的研究[D]. 石河子: 石河子大学, 2006. 
[22]  马勤建. 基于高光谱植被指数的棉花冠层结构参数的估算研究[D]. 石河子: 石河子大学, 2008. 
[23]  钱育蓉, 于炯, 贾振红, 等. 新疆典型荒漠草地的高光谱特征提取和分析研究[J]. 草业学报, 2013, 22(1): 157-166.  浏览
[24]  Kawamura K, Watanabe N, Sakanoue S,et al. Waveband selection using a phased regression with a bootstrap procedure for estimating legume content in a mixed sown pasture[J]. Grassland Science, 2011, 57(2): 81-93. 
[25]  Zhao D, Starks P J, Brown M A,et al. Assessment of forage biomass and quality parameters of bermudagrass using proximal sensing of pasture canopy reflectance[J]. Grassland Science, 2007, 53(1): 39-49. 
[26]  Mutanga O, Skidmore A K, Prins H H T. Predicting in situ pasture quality in the Kruger National Park, South Africa using continuum removed absorption features[J]. Remote Sensing of Environment, 2004, 89(3): 393-408. 
[27]  Post C J, Degloria S D, Cherney J H,et al. Spectral measurements of alfalfa/grass fields related to forage properties and species composition[J]. Plant Nutrition, 2007, 30(11): 1779-1789. 
[28]  张凯, 王润元, 王小平, 等. 黄土高原春小麦地上鲜生物量高光谱遥感估算模型[J]. 生态学杂志, 2009, 28(6): 1155-1161. 
[29]  张凯, 郭铌, 王润元, 等. 甘南草地地上生物量的高光谱遥感估算研究[J]. 草业科学, 2009, 26(11):44-50.
[30]  杨红丽, 陈功, 吴建付. 施氮水平对多花黑麦草植株氮含量及反射光谱特征的影响[J]. 草业学报, 2011, 20(3): 239-244.  浏览
[31]  纳钦. 苜蓿和缘毛雀麦高光谱与营养成分的相关性研究[D]. 呼和浩特: 内蒙古农业大学, 2010. 
[32]  周宇庭, 付刚, 沈振西, 等. 藏北典型高寒草甸地上生物量的遥感估算模型[J]. 草业学报, 2013, 22(1): 120-129.  浏览
[33]  张艳楠, 牛建明, 张庆, 等. 植被指数在典型草原生物量遥感估测应用中的问题探讨[J]. 草业学报, 2012, 21(1): 229-238.  浏览
[34]  浦瑞良, 宫鹏. 高光谱及其应用[M]. 北京:高等教育出版社, 2000: 52-53. 
[35]  马勤建, 王登伟, 黄春燕, 等. 棉花叶面积指数和地上干物质积累量的高光谱估算模型研究[J]. 棉花学报, 2008, 20(3): 217-222. 
[36]  黄春燕, 王登伟, 曹连莆, 等. 棉花地上鲜生物量的高光谱估算模型研究[J]. 农业工程学报, 2007, 23(3):131-135. 
[37]  柏军华, 李少昆, 王克如, 等. 基于近地高光谱棉花生物量遥感估算模型[J]. 作物学报, 2007, 33(2): 311-316. 
[38]  谭昌伟, 王纪华, 黄文江, 等. 夏玉米叶片全氮、叶绿素及叶面积指数的光谱响应研究[J]. 西北植物学报, 2004, 24(6):1041-1046.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133