全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2014 

松嫩草地两种广布豆科植物分布特征及其与土壤因子关系

DOI: 10.11686/cyxb20140105, PP. 31-40

Keywords: 豆科植物,地上生物量,群落特征,土壤,盐碱化

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过野外调查研究了松嫩草地中五脉山黧豆、野豌豆这两种广泛分布的豆科植物的地上生物量分布特征与土壤因子的关系。结果表明,五脉山黧豆地上生物量分布的最大值为286.25g/m2,最小为51.73g/m2,野豌豆的最大地上生物量分布为494.77g/m2,最小为61.19g/m2。两种豆科植物种群聚集水平主要在100~200g/m2和100~300g/m2。两种豆科植物地上生物量和群落高度、地上生物量、物种丰富度、多样性指数、均匀性指数之间均有显著的正相关关系,而与群落密度有显著负相关关系。两种豆科植物地上生物量与土壤有机碳、总氮含量呈现显著正相关关系,而与土壤pH、电导率呈显著负相关关系,与土壤总磷含量无显著相关关系。低豆科地上生物量下,群落特征和土壤因子随豆科植物地上生物量增加变化更大,而高豆科植物地上生物量下,群落特征和土壤因子随豆科地上生物量增加变化幅度较小。与野豌豆相比,群落特征和土壤因子随五脉山黧豆生物量增加的变化幅度更大。通过上述研究结果我们得出:51.73和61.19g/m2是五脉山黧豆和野豌豆在群落中维持种群延续的最小单位面积地上生物量;两种豆科植物的生态性状可能对群落的结构和功能有促进作用,且单位质量的五脉山黧豆较野豌豆对群落结构的影响可能更强;土壤盐碱程度不会或至少不会单独构成对两种豆科植物分布的限制;磷可能是豆科植物分布的限制因子之一。这个研究为在本区内保护和发展这两种豆科植物提供了重要参考。

References

[1]  Li H Y, Li Z Y, Shi W G, et al. A study on leaf anatomic traits and drought resistance of Medicago rutenica in Inner Mongolia[J]. Acta Pratacultural Science, 2012, 21(3): 138-146. 
[2]  Liu J, Chai H, Liu Y, et al. A study on pjysiological characteristics and comparison of salt tolerance of two Medicago Sativa at seedling stage[J]. Acta Pratacultural Science, 2013, 22(2): 250-256. 
[3]  Lu J H, Lv X, Wu L, et al. Germination responses of three medicinal licorices to saline environments and their suitable ecological regions[J]. Acta Pratacultural Science, 2013, 22(2): 195-202. 
[4]  Luo J M, Deng W, Zhang X P, et al. Micro structure of sodic Alkaline soil and water transportation[J]. Chinese Journal of Soil Science, 2009, (3): 482-486. 
[5]  Song Y T. A comparative study of leguminous plant communities and community characteristics Leymus Aneurolepidium[D]. Changchun: Northeast Normal University, 2008. 
[6]  Tao Y, Zhou D W, Jiang Y, et al. Distribution pattern of five leguminous plants in Alkalized Meadow in the Songnen Plain[J]. Journal of Beijing Normal University (Natural Science), 2008, 44(4): 539-544. 
[7]  Li X Y, Lin J X, Li X J, et al. Growth adaptation and Na+ and K+ metabolism responses of Leymus chinensis seedlings under salt and alkali stresses[J]. Acta Prataculturae Sinica, 2013, 22(1): 201-209. 
[8]  Yang G. Salinity stress on leguminous grass seed germination and physiological effect[D]. Changchun: Northeast Normal University, 2009. 
[9]  Zhou D W, Li Q, Song Y T, et al. Salinization-alkalization of Leymus chinensis grassland in Songnen Plain of Northeast China[J]. Chinese Journal of Applied Ecology, 2011, 22(6): 1423-1430. 
[10]  Li Q, Liu Y C, Zhou D W, et al. Three dominant species communities response to grazing excluded in Songnen degraded grassland[J]. Journal of Northeast Normal University(Natural Science Edition), 2009, 41(2): 139-144. 
[11]  Song Y T. Songnen grassland plant functional ecology research[D]. Changchun: Northeast Normal University, 2012. 
[12]  Nathan R, Muller-Landau H C. Spatial patterns of seed dispersal, their determinants and consequences for recruitment[J]. Trends in Ecology and Evolution, 2000, 15(7): 278-285. 
[13]  参考文献:
[14]  牛书丽, 蒋高明. 豆科植物在中国草原生态系统中的地位及其生理生态研究[J]. 植物学通报, 2004, 21(1): 9-18. 
[15]  Buxton D R, Redfearn D D. Plant limitations to fiber digestion and utilization[J]. The Journal of Nutrition, 1997, 127(5): 814-818. 
[16]  贾丽, 曲式曾. 豆科锦鸡儿属植物研究进展[J]. 植物研究, 2001, 21(4): 515-518. 
[17]  Lory J A, Russelle M P, Heichel G H. Quantification of symbiotically fixed nitrogen in soil surrounding alfalfa roots and nodules[J]. Agronomy Journal, 1992, 84(6): 1033-1040. 
[18]  Paynel F, Murray P J, Cliquet J B. Root exudates: a pathway for short-term N transfer from clover and ryegrass[J]. Plant and Soil, 2001, 229(2): 235-243. 
[19]  Cadisch G R, Schunke M, Giller K Z. Nitrogen cycle in monoculture grassland and Legume-grass mixture in Brazil Red soil[J]. Trop Grasslands, 1994, 28: 43-52. 
[20]  Spehn E M, Scherer-Lorenzen M, Schmid B, et al. The role of legumes as a component of biodiversity in a cross-European study of grassland biomass nitrogen[J]. Oikos, 2002, 98(2): 205-218. 
[21]  Van Ruijven J, Berendse F. Positive effects of plant species diversity on productivity in the absence of legumes[J]. Ecology Letters, 2003, 6(3): 170-175. 
[22]  谭志远. 陕西及甘, 宁部分地区豆科植物根瘤菌资源调查[J]. 西北植物学报, 1996, 15(2): 189-196.
[23]  Ehrman T, Cocks P S. Ecogeography of annual legumes in Syria: distribution patterns[J]. Journal of Applied Ecology, 1990, 27(2): 578-591. 
[24]  Beale P E, Lahlou A, Bounejmate M. Distribution of wild annual legume species in Morocco and relationship with soil and climatic factors[J]. Australian Journal of Agricultural Research, 1991, 42(7): 1217-1230. 
[25]  王一峰, 杨文玺, 王春霞, 等. 甘肃豆科饲用植物资源[J]. 草业科学, 2006, 23(3): 12-16. 
[26]  刘国道, 罗丽娟, 白昌军, 等. 海南豆科饲用植物资源及营养价值评价[J]. 草地学报, 2006, 14(3): 254-260. 
[27]  李鸿雁, 李志勇, 师文贵, 等. 内蒙古扁蓿豆叶片解剖性状与抗旱性的研究[J]. 草业学报, 2012, 21(3): 138-146.  浏览
[28]  刘晶, 才华, 刘莹, 等. 两种紫花苜蓿苗期耐盐生理特性的初步研究及耐盐性比较[J]. 草业学报, 2013, 22(2): 250-256.  浏览
[29]  陆嘉惠, 吕新, 吴玲, 等. 三种药用甘草种子对盐渍环境的萌发响应及适宜生态种植区[J]. 草业学报, 2013, 22(2): 195-202.  浏览
[30]  罗金明, 邓伟, 张晓平, 等. 苏打盐渍土的微域特征以及水分的迁移规律探讨[J]. 土壤通报, 2009, (3): 482-486. 
[31]  宋彦涛. 松嫩草地豆科植物群落与羊草群落特征比较研究[D]. 长春: 东北师范大学, 2008. 
[32]  陶岩, 周道玮, 江源, 等. 松嫩平原盐碱化草甸中 5 种豆科植物的分布格局研究[J]. 北京师范大学学报 (自然科学版), 2008, 44(4): 539-544. 
[33]  中国科学院土壤研究所. 土壤理化分析方法[M]. 上海: 上海科技出版社, 1978. 
[34]  Leimu R, Mutikainen P I A, Koricheva J, et al. How general are positive relationships between plant population size, fitness and genetic variation[J]. Journal of Ecology, 2006, 94(5): 942-952. 
[35]  Hector A, Bazeley-White E, Loreau M,et al. Overyielding in grassland communities: testing the sampling effect hypothesis with replicated biodiversity experiments[J]. Ecology Letters, 2002, 5(4): 502-511. 
[36]  江小雷, 张卫国. 一年生植物群落内取样效应和互补效应的分离[J]. 生态学报, 2006, 26(6): 1896-1902. 
[37]  Adams T P, Purves D W, Pacala S W. Understanding height-structured competition in forests: is there an R* for light[J]. Proceedings of the Royal Society B: Biological Sciences, 2007, 274: 3039-3048. 
[38]  武高林, 陈敏, 杜国祯. 三种高寒植物幼苗生物量分配及性状特征对光照和养分的响应[J]. 生态学报, 2010, 30(1): 60-66. 
[39]  Kardol P, Martijn Bezemer T, Van Der Putten W H. Temporal variation in plant-soil feedback controls succession[J]. Ecology Letters, 2006, 9(9): 1080-1088. 
[40]  蔺吉祥, 李晓宇, 张兆军, 等. 温度与盐碱胁迫交互作用对羊草种子萌发与幼苗生长的影响[J]. 草地学报, 2011, 19(6): 1005-1009. 
[41]  Reference:
[42]  Niu S L, Jiang G M. The importance of legume in China grassland ecosystem and the advances in physiology and ecology studies[J]. Chinese Bulletin of Botany, 2004, 21(1): 9-18. 
[43]  Buxton D R, Redfearn D D. Plant limitations to fiber digestion and utilization[J]. The Journal of Nutrition, 1997, 127(5): 814-818. 
[44]  Jia L, Qu S Z. The study progress on the genus Caragana fabr[J]. Bulletin of Botanical Research, 2001, 21(4): 515-518. 
[45]  Lory J A, Russelle M P, Heichel G H. Quantification of symbiotically fixed nitrogen in soil surrounding alfalfa roots and nodules[J]. Agronomy Journal, 1992, 84(6): 1033-1040. 
[46]  Paynel F, Murray P J, Cliquet J B. Root exudates: a pathway for short-term N transfer from clover and ryegrass[J]. Plant and Soil, 2001, 229(2): 235-243. 
[47]  Cadisch G R, Schunke M, Giller K Z. Nitrogen cycle in monoculture grassland and Legume-grass mixture in Brazil Red soil[J]. Trop Grasslands, 1994, 28: 43-52. 
[48]  Spehn E M, Scherer-Lorenzen M, Schmid B,et al. The role of legumes as a component of biodiversity in a cross-European study of grassland biomass nitrogen[J]. Oikos, 2002, 98(2): 205-218. 
[49]  Van Ruijven J, Berendse F. Positive effects of plant species diversity on productivity in the absence of legumes[J]. Ecology Letters, 2003, 6(3): 170-175. 
[50]  Tan Z Y. Investigation of Rhizob of Leguminous plants in Shanxi province and some areas of Gansu province and Ningxia autonomous region[J]. Acta Botanica Boreali-Occidentalia Sinica, 1996, 15(2): 189-196.
[51]  Ehrman T, Cocks P S. Ecogeography of annual legumes in Syria: distribution patterns[J]. Journal of Applied Ecology, 1990, 27(2): 578-591. 
[52]  Beale P E, Lahlou A, Bounejmate M. Distribution of wild annual legume species in Morocco and relationship with soil and climatic factors[J]. Australian Journal of Agricultural Research, 1991, 42(7): 1217-1230. 
[53]  Wang Y F, Yang W X, Wang C X, et al. The forage plant resource of legume family (Leguminosae) in Gansu[J]. Acta Pratacultural Science, 2006, 23(3): 12-16. 
[54]  Liu G D, Luo L J, Bai C J, et al. A survey of Hainan island forage Legume resourcesand assessment of their nutritional values[J]. Acta Agrestia Sinica, 2006, 14(3): 254-260. 
[55]  The Chinese academy of sciences institute of soil. Soil Physical and Chemical Analysis Method[M]. Shanghai: Shanghai Science and Technology Press, 1978. 
[56]  Leimu R, Mutikainen P I A, Koricheva J,et al. How general are positive relationships between plant population size, fitness and genetic variation[J]. Journal of Ecology, 2006, 94(5): 942-952. 
[57]  Hector A, Bazeley-White E, Loreau M,et al. Overyielding in grassland communities: testing the sampling effect hypothesis with replicated biodiversity experiments[J]. Ecology Letters, 2002, 5(4): 502-511. 
[58]  Jiang X L, Zhang W G. Separating sampling effect from complementary effect in the annuaI plant commuities[J]. Acta Ecologica Sinica, 2006, 26(6): 1896-1902. 
[59]  Adams T P, Purves D W, Pacala S W. Understanding height-structured competition in forests: is there an R* for light[J]. Proceedings of the Royal Society B: Biological Sciences, 2007, 274: 3039-3048. 
[60]  Wu G L, Chen M, Du G Z. Response of biomass allocation and morphological characteristics to light and nutrient resources for seedlings of three alpine species[J]. Acta Ecologica Sinica, 2010, 30(1): 60-66. 
[61]  Kardol P, Martijn Bezemer T, Van Der Putten W H. Temporal variation in plant-soil feedback controls succession[J]. Ecology Letters, 2006, 9(9): 1080-1088. 
[62]  Lin J X, Li X Y, Zhang Z J, et al. Effects of temperature salinity, Alkalinity and their interactions on seed getmination and seedling growth of Leymus Chinensis[J]. Acta Agrestia Sinica, 2011, 19(6): 1005-1009. 
[63]  Guan B, Zhou D W, Tian Y, et al. Effect of salinity,Alkalinity and temperature on germination of Medicago Ruthenica seeds[J]. Chinese Journal of Grassland, 2009, 32(1): 58-63. 
[64]  管博, 周道玮, 田雨, 等. 盐碱及变温条件对花苜蓿种子发芽的影响[J]. 中国草地学报, 2009, 32(1): 58-63. 
[65]  李晓宇, 蔺吉祥, 李秀军, 等. 羊草苗期对盐碱胁迫的生长适应及Na+、K+代谢响应[J]. 草业学报, 2013, 22(1): 201-209.  浏览
[66]  杨光. 盐碱胁迫对豆科牧草种子萌发及其生理的影响[D]. 长春: 东北师范大学, 2009. 
[67]  周道玮, 李强, 宋彦涛, 等. 松嫩平原羊草草地盐碱化过程[J]. 应用生态学报, 2011, 22(6): 1423-1430. 
[68]  李强, 刘延春, 周道玮, 等. 松嫩退化草地三种优势植物群落对封育的响应[J]. 东北师范大学学报(自然科学版), 2009, 41(2): 139-144. 
[69]  宋彦涛. 松嫩草地植物功能生态学研究[D]. 长春: 东北师范大学, 2012. 
[70]  Nathan R, Muller-Landau H C. Spatial patterns of seed dispersal, their determinants and consequences for recruitment[J]. Trends in Ecology and Evolution, 2000, 15(7): 278-285. 

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133