全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

青藏高原东部高寒草甸草地土壤物理性状对氮元素添加的响应

DOI: 10.11686/cyxb2015154, PP. 12-21

Keywords: 高寒草甸,氮元素添加,土壤物理性状,土壤团聚体,土壤团聚体稳定性

Full-Text   Cite this paper   Add to My Lib

Abstract:

依托设置于青藏高原东部夏河县桑科草原的天然草地刈割型草场培育定位试验,探讨不同氮元素添加量对高寒草甸草地土壤物理性状的影响。本试验共设4个处理,分别为对照(CK,0kgN/hm2)、低氮(LN,50kgN/hm2)、中氮(MN,100kgN/hm2)、高氮(HN,150kgN/hm2)。通过对高寒草甸草地土壤容重、孔隙度、紧实度、土壤团聚体等物理性状进行测定与分析,结果表明,MN与HN处理可显著降低0~10cm土壤容重与土壤紧实度、增加土壤总孔隙度、非毛管孔隙度与最大持水量。20~30cm土层中LN、MN、HN处理均可显著增加土壤容重、土壤紧实度,降低土壤总孔隙度、最大持水量。对土壤团聚体的影响,与CK处理相比MN、HN处理可显著提高各土层≥0.25mm机械稳定性土壤团聚体含量、提升土壤团聚体平均重量直径(MWD);较之CK处理,LN、MN处理可显著提升各土层≥0.25mm水稳性团聚体含量,同时不同氮元素添加处理均可显著提升水稳性团聚体和MWD,表明氮元素添加对该区土壤侵蚀性有较好的抑制作用,进而减少水土和养分的流失。对地上和地下生物量的影响,MN、HN处理能显著提升草地地上生物量;MN处理显著增加了地下生物量、HN处理显著降低了地下生物量;LN处理对地上与地下生物量的影响不显著。通过试验得出结论MN处理对土壤物理性状的改善效果较好,该处理改善了土壤容重、孔隙度及土壤紧实度,提高了土壤干筛≥0.25mm机械稳定性团聚体与湿筛≥0.25mm水稳性团聚体含量及其稳定性(MWD),增加了草地地上生物量和地下生物量。

References

[1]  Ma G, Wang P, Wang D X, et al . Response of soil greenhouse gas emissions to different forms of nitrogen in alpine shrub ecosystem. Acta Prataculturae Sinica, 2015, 24(3): 20-29. 浏览
[2]  Xin G S, Long R J, Shang Z H, et al . Status some selected major and trace elements in pasture soil from northeast of the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2012, 21(2): 8-17.
[3]  Xie T P. Reproductive Strategies of Typical Clonal Plant Ligularia virgaurea at Alpine Meadow in Qinghai-Tibetan Plateau[D]. Lanzhou: Lanzhou University, 2014.
[4]  Wang C T, Wang G X, Liu W, et al . Effects of fertilization gradients on plant community structure and soil characteristics in alpine meadow. Acta Ecologica Sinica, 2013, 33(10): 3103-3113.
[5]  Zhao J M, Zhang D G, Liu C Z, et al . The effect of different land use patterns on soil properties in alpine areas of eastern Qilian Mountains. Acta Ecologica Sinica, 2012, 32(2): 548-556.
[6]  邸佳颖, 刘小粉, 杜章留, 等. 长期施肥对红壤性水稻土团聚体稳定性及固碳特征的影响. 中国生态农业学报, 2014, 22(10): 1129-1138
[7]  路海东, 薛吉全, 马国胜, 等. 陕西榆林春玉米高产田土壤理化性状及根系分布. 应用生态学报, 2010, 21(4): 895-900.
[8]  杨宁, 邹冬生, 杨满元, 等. 衡阳紫色土丘陵坡地植被不同恢复阶段土壤微生物量碳的变化及其与土壤理化因子的关系. 生态环境学报, 2013, 22(1): 25-30.
[9]  Hou X Q, Li R, Han Q F, et al . Effects of alternate tillage on soil physicochemical properties and yield of dry land wheat in arid areas of South Ningxia. Acta Pedologica Sinica, 2012, 49(3): 592-600.
[10]  Wu J, Cai L Q, Luo Z Z, et al . Effects of conservation tillage on soil physical properties of rained field of the Loess Plateau in central of Gansu. Journal of Soil and Water Conservation, 2014, 28(2): 112-117.
[11]  Gough L, Osenberg C W. Fertilization effects on species density and primary productivity in herbaceous plant communities. Oikos, 2000, 89(3): 428-439.
[12]  Fridley J D. Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities. Oecologia, 2002, 132(2): 271-277.
[13]  Rajaniemi T K. Why does fertilization reduce plant species diversity testing three competition-based hypotheses. Journal of Ecology, 2002, 90(2): 316-324.
[14]  Wang C T, Long R J, Wang Q L. Fertilization and litter effects on the functional group biomass, species diversity of plant, microbial biomass and enzyme activity of two alpine meadow communities. Plant and Soil, 2010, 331(1/2): 377-389.
[15]  Bauer G A, Bazzaz F A, Minocha R. Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine stand in the NE United States. Forest Ecology and Management, 2004, 196(1): 173-186.
[16]  Peng Q, Dong Y S, Qi Y C. Influence of external nitrogen in put on key processes of carbon cycle in terrestrial ecosystem. Advances in Earth Science, 2008, 23(8): 875-883.
[17]  Xu Z Z, Zhou G S. Relationship between carbon and nitrogen and environmental regulation in plants under global change-From molecule to ecosystem. Journal of Plant Ecology, 2007, 31(4): 738-747.
[18]  Institute of Soil Science, CAS. Determination of Soil Physical Properties[M]. Beijing: Science Press, 1978: 147-148.
[19]  Van Bavel C H M. Mean weight-diameter of soil aggregates as a statistical index of aggregation. Soil Science Society of American Journal, 1950, 20(14): 20-23.
[20]  Mazurak A. Effect of gaseous phase on water-stable synthetic aggregate. Soil Science, 1950, 69(2): 135-148.
[21]  Ma W H, Fang J Y. RBS ratios of temperate steppe and the environmental controls in Inner Mongolia. Acta Scientiarum Naturalium Universitatis Pekinensis, 2006, 42(6): 774-778.
[22]  Chen Q, Kravchenko Y S, Chen Y, et al . Seasonal variations of soil structures and hydraulic conductivities and their effects on soil and water conservation under no-tillage and reduced tillage. Acta Pedologica Sinica, 2014, 51(1): 11-21.
[23]  Zhao J H, Zhang D G, Liu C Z. The effect of land use patterns on soil moisture retention capacity and soil infiltration property in eastern Qilian Mountains. Journal of Natural Resources, 2012, 27(3): 422-429.
[24]  Xie J S, Yang Y S, Chen G S, et al . Effects of vegetation restoration on water stability and organic carbon distribution in aggregates of degraded red soil in subtropics of China. Acta Ecologica Sinica, 2008, 28(2): 702-709.
[25]  Cai W X, Xu C L, Zhang D G, et al . Ecological responses of soil bulk density and water content to different non-grazing patterns in alpine rhododendron scrubland. Acta Prataculturae Sinica, 2011, 20(3): 28-35.
[26]  Zhang R S, Luo Z Z, Cai L Q, et al . Effects of long-term conservation tillage on soil physical quality of rained areas of the Loess Plateau. Acta Prataculturae Sinica, 2011, 20(4): 1-10.
[27]  Zhu D F, Lin Q Q, Cao W X. Root growth in rice and its response to soil density. Chinese Journal of Applied Ecology, 2002, 13(1): 60-62.
[28]  Huang X X. Effects of different tillage method on rice root system. Journal of Agriculture Sciences, 1986, 2(2): 26-31.
[29]  Miao G Y, Gao Z Q, Zhang Y T, et al . Effect of water and fertilizer to root system and its correlation with tops in wheat. Acta Agronomica Sinica, 2002, 28(4): 445-450.
[30]  Zhang J. Effects of Different Nitrogen Levels on Root Development of Wheat with Different Quality Traits and Studies on Special Root Hairs[D].Zhengzhou: Henan Agricultural University, 2008.
[31]  Liu E K, Zhao B Q, Mei X R, et al . Distribution of water-stable aggregates and organic carbon of arable soils affected by different fertilizer application. Acta Ecologica Sinica, 2010, 30(4): 1035-1041.
[32]  Yang J G, An S S, Zheng F L. Characteristics of soils properties during vegetation rehabilitation in Ningxia loess hilly region. Journal of Soil and Water Conservation, 2006, 20(1): 72-75, 98.
[33]  An S S, Huang Y M, Li B C, et al . Characteristics of soil water stable aggregates and relationship with soil properties during vegetation rehabilitation in a loess hilly region. Chinese Journal of Soil Science, 2006, 37(1): 45-50.
[34]  Ma L, Yang L Z, Ci E, et al . Effects of long-term fertilization on distribution and mineralization of organic carbon in paddy soil. Acta Pedologica Sinica, 2009, 49(6): 1050-1058.
[35]  Di J Y, Liu X F, Du Z L, et al . Influences of long-term organic and chemical fertilization on soil aggregation and associated organic carbon fractions in a red paddy soil. Chinese Journal of Eco-Agriculture, 2014, 22(10): 1129-1138.
[36]  Lu H D, Xue J Q, Ma G S, et al . Soil physical and chemical properties and root distribution in high yielding spring maize fields in Yulin, Shanxi Province. Chinese Journal of Applied Ecology, 2010, 21(4): 895-900.
[37]  Yang N, Zou D S, Yang M Y, et al . The change of soil microbial biomass carbon and the relationship between it and soil physic-chemical factors in different restoration stages on sloping-land with purple soils in Hengyang. Ecology and Environmental Science, 2013, 22(1): 25-30.
[38]  马钢, 王平, 王冬雪, 等. 高寒灌丛土壤温室气体释放对添加不同形态氮素的相应. 草业学报, 2015, 24(3): 20-29. 浏览
[39]  辛国省, 龙瑞军, 尚占环, 等. 青藏高原东北缘放牧草地土壤矿物元素含量及分布特征. 草业学报, 2012, 21(2): 8-17.
[40]  谢田朋. 青藏高原高寒草甸典型克隆植物黄帚橐吾的繁殖对策研究[D]. 兰州: 兰州大学, 2014.
[41]  王长庭, 王根绪, 刘伟, 等. 施肥梯度对高寒草甸群落结构、功能和土壤质量的影响. 生态学报, 2013, 33(10): 3103-3113.
[42]  赵锦梅, 张德罡, 刘长仲, 等. 祁连山东段高寒地区土地利用方式对土壤性状的影响. 生态学报, 2012, 32(2): 548-556.
[43]  侯贤清, 李荣, 韩清芳, 等. 轮耕对宁南旱区土壤理化性状和旱地小麦产量的影响. 土壤学报, 2012, 49(3): 592-600.
[44]  武均, 蔡立群, 罗珠珠, 等. 保护性耕作对陇中黄土高原雨养农田土壤物理性状的影响. 水土保持学报, 2014, 28(2): 112-117.
[45]  中国科学院南京土壤研究所土壤物理研究室. 土壤物理性质测定法[M]. 北京: 科学出版社, 1978: 147-148.
[46]  马文红, 方精云. 内蒙古温带草原的根冠比及其影响因素. 北京大学学报(自然科学版), 2006, 42(6): 774-778.
[47]  陈强, Kravchenko Y S, 陈渊, 等. 少免耕土壤结构与导水能力的季节变化及其水保效果. 土壤学报, 2014, 51(1): 11-21.
[48]  赵锦梅, 张德罡, 刘长仲. 东祁连山土地利用方式对土壤持水能力和渗透性的影响. 自然资源学报, 2012, 27(3): 422-429.
[49]  谢锦升, 杨玉盛, 陈光水, 等. 植被恢复对退化红壤团聚体稳定性及碳分布的影响. 生态学报, 2008, 28(2): 702-709.
[50]  曹文侠, 徐长林, 张德罡, 等. 杜鹃灌丛草地土壤容重与水分特征对不同休牧模式的响应. 草业学报, 2011, 20(3): 28-35.
[51]  张仁陟, 罗珠珠, 蔡立群, 等. 长期保护性耕作对黄土高原旱地土壤物理质量的影响. 草业学报, 2011, 20(4): 1-10.
[52]  朱德峰, 林贤青, 曹卫星. 水稻根系生长及其对土壤紧密度的反应. 应用生态学报, 2002, 13(1): 60-62.
[53]  黄细熹. 土壤耕作对水稻根系的影响. 江苏农业学报, 1986, 2(2): 26-31.
[54]  苗果园, 高志强, 张云亭, 等. 水肥对小麦根系整体影响及其与地上部相关的研究. 作物学报, 2002, 28(4): 445-450.
[55]  张均. 不同施氮水平对不同品质类型小麦根系发育的影响及特殊根毛的研究[D]. 郑州: 河南农业大学, 2008.
[56]  刘恩科, 赵秉强, 梅旭荣, 等. 不同施肥处理对土壤水稳定性团聚体及有机碳分布的影响. 生态学报, 2010, 30(4): 1035-1041.
[57]  杨建国, 安韶山, 郑粉莉. 宁南山区植被自然恢复中土壤团聚体特征及其与土壤性质关系. 水土保持学报, 2006, 20(1): 72-75, 98.
[58]  安韶山, 黄懿梅, 李壁成, 等. 黄土丘陵区植被恢复中土壤团聚体演变及其与土壤性质的关系. 土壤通报, 2006, 37(1): 45-50.
[59]  马力, 杨林章, 慈恩, 等. 长期不同施肥处理对水稻土有机碳分布变异及其矿化动态的影响. 土壤学报, 2009, 46(6): 1050-1058.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133