McNaughton S J. Grazing as an optimization process: grass-ungulate relationships in the Serengeti. American Naturalist, 1979, 113(5): 691-703.
[2]
Dyer M I, Turner C L, Seastedt T R. Herbivory and its consequences. Ecological Applications, 1993, 3(3): 10-16.
[3]
Frank D A, Groffman P M. Ungulate vs. landscape control of soil C and N processes in grasslands of Yellowstone National Park. Ecology, 1998, 79(7): 2229-2241.
[4]
Bezemer T M, van Dam N M. Linking aboveground and belowground interactions via induced plant defenses. Trends in Ecology & Evolution, 2005, 20(11): 617-624.
[5]
Hamilton III E W, Frank D A. Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology, 2001, 82(9): 2397-2402.
[6]
Yang Y F, Wu L W, Lin Q Y, et al . Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Global Change Biology, 2013, 19(2): 637-648.
[7]
Qu T B, Zhang J F, Du W C, et al . Research progress on effects of grazing on diversity of microorganisms in grassland soil. Contemporary Eco-Agriculture, 2012, (3): 14-20.
[8]
Bardgett R D, Wardle D A, Yeates G W. Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biology and Biochemistry, 1998, 30(14): 1867-1878.
[9]
Wardle D A, Nicholson K S. Synergistic effects of grassland plant species on soil microbial biomass and activity: implications for ecosytem-level effects of enriched plant diversity. Functional Ecology, 1996, 10: 410-416.
[10]
Kohler F, Hamelin J, Gillet F, et al . Soil microbial community changes in wooded mountain pastures due to simulated effects of cattle grazing. Plant and Soil, 2005, 278(1-2): 327-340.
[11]
Maharning A R, Mills A A, Adl S M. Soil community changes during secondary succession to naturalized grasslands. Applied Soil Ecology, 2009, 41(2): 137-147.
[12]
Holt J. Grazing pressure and soil carbon, microbial biomass and enzyme activities in semi-arid northeastern Australia. Applied Soil Ecology, 1997, 5(2): 143-149.
[13]
Northup B K, Brown J R, Holt J A. Grazing impacts on the spatial distribution of soil microbial biomass around tussock grasses in a tropical grassland. Applied Soil Ecology, 1999, 13(3): 259-270.
[14]
Wang K H, McSorley R, Bohlen P, et al . Cattle grazing increases microbial biomass and alters soil nematode communities in subtropical pastures. Soil Biology and Biochemistry, 2006, 38(7): 1956-1965.
[15]
Regan K M, Nunan N, Boeddinghaus R S, et al . Seasonal controls on grassland microbial biogeography: Are they governed by plants, abiotic properties or both? Soil Biology and Biochemistry, 2014, 71: 21-30.
[16]
Bardgett R D, Leemans D K, Cook R, et al . Seasonality of the soil biota of grazed and ungrazed hill grasslands. Soil Biology and Biochemistry, 1997, 29(8): 1285-1294.
[17]
Gans J, Wolinsky M, Dunbar J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science, 2005, 309(5739): 1387-1390.
[18]
Daniel R. The metagenomics of soil. Nature Reviews Microbiology, 2005, 3(6): 470-478.
[19]
Zhao J. Effect of stocking reats on soil microbial number and biomass in steppe. Acta Agrestia Sinica, 1999, 7(3): 223-227.
[20]
Zhang C X, Nan Z B. Changeable characteristics of three soil microbial groups under different grazing intensities in Loess Plateau. Pratacultural Science, 2011, 27(11): 131-136.
[21]
Wang C T, Long R J, Wang G X, et al . Relationship between plant communities, characters, soil physical and chemical properties, and soil microbiology in alpine meadows. Acta Prataculturae Sinica, 2010, 19(6): 25-34. 浏览
[22]
Liu S G, Ge S R, Long Z F. Studies on soil microorganism numbers andmicrobiota of degenerated rangelands in northwest region of Sichuan P R.China. Acta Prataculturae Sinica, 1994, 3(4): 70-76.
[23]
Li C L, Zhao M L, Han G D, et al . The effect of grazing on soil micro-organism and soil nutrients and their seasonal dynamics in Stipa breviflora Steppe. Journal of Arid Land Resources and Environment, 2009, 23(4): 184-190.
[24]
Shan G L, Chen G, Ning F, et al . Dynamics of soil microorganism and enzyme activity in typical steppe of restoration succession process. Acta Agrestia Sinica, 2012, 20(2): 292-297.
[25]
Gu A X, Fan Y M, Wu H Q, et al . Relationship between the number of three main microorganisms and the soil environment of degraded grassland on the north slope of the Tianshan Mountains. Acta Prataculturae Sinica, 2010, 19(2): 116-123. 浏览
[26]
Wang X Z, Sheng L X. Effect of grazing intensity on microorganisms quantity and microbial biomass of soil in grassland under protection forest of songnen plain. Journal of Animal and Veterinary Advances, 2012, 11(24): 4549-4552.
[27]
Smith J L, Paul E A. The significance of soil microbial biomass estimations. Soil Biochemistry, 1990, 6: 357-396.
[28]
Kennedy A C, Smith K L. Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil, 1995, 170(1): 75-86.
[29]
Chen G C. Soil microbial quantity determination method and its application in red soil. Chinese Journal of Soil Science, 1999, 30(6): 197-200.
[30]
Gao Y C, Zhou W S, Chen W X, et al . Estimation for biomass and turnover of soil microorganisms. Chinese Journal of Ecology, 1993, 12(6): 6-10.
[31]
Risser P G, Birney E C, Blocker H D, et al . The True Prairie Ecosystem[M]. Pennsylvania: Hutchinson Ross Publishing Company Stroudsburg, 1981.
[32]
Ross D J, Tate K R. Microbial biomass in soil: effects of some experimental variables on biochemical estimations. Soil Biology and Biochemistry, 1984, 16(2): 161-167.
[33]
Sarathchandra S U, Perrott K W, Upsdell M P. Microbiological and biochemical characteristics of a range of New Zealand soils under established pasture. Soil Biology and Biochemistry, 1984, 16(2): 177-183.
[34]
Martin J P, Chapman H D. Volatilization of ammonia from surface-fertilized soils. Soil Science, 1951, 71(1): 25-34.
[35]
Stillwell M A, Woodmansee R G. Chemical transformations of urea-nitrogen and movement of nitrogen in a shortgrass prairie soil. Soil Science Society of America Journal, 1981, 45(5): 893-898.
[36]
Ruess R W, McNaughton S J. Grazing and the dynamics of nutrient and energy regulated microbial processes in the Serengeti grasslands. Oikos, 1987, 49(1): 101-110.
[37]
Singh R S, Srivastava S C, Raghubanshi A S, et al . Microbial C, N and P in dry tropical savanna: effects of burning and grazing. Journal of Applied Ecology, 1991, 28(3): 869-878.
[38]
Bardgett R D, Hobbs P J, Frostegård Å. Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biology and Fertility of Soils, 1996, 22(3): 261-264.
[39]
Qi S, Zheng H, Lin Q, et al . Effects of livestock grazing intensity on soil biota in a semiarid steppe of Inner Mongolia. Plant and Soil, 2011, 340: 117-126.
[40]
Gao Y Z, Giese M, Lin S, et al . Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant and Soil, 2008, 307(1-2): 41-50.
[41]
Hoffmann C, Funk R, Wieland R, et al . Effects of grazing and topography on dust flux and deposition in the Xilingele grassland, Inner Mongolia. Journal of Arid Environments, 2008, 72(5): 792-807.
[42]
Schneider K, Huisman J, Breuer L, et al . Ambiguous effects of grazing intensity on surface soil moisture: A geostatistical case study from a steppe environment in Inner Mongolia, PR China. Journal of Arid Environments, 2008, 72(7): 1305-1319.
[43]
Zhao S. Effects of Grazing and Fenced on Soil Microbial Diversity in Stipa Steppes of Hulunbeier, Inner Mongolia[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011.
[44]
Li Y J, Li G, Song X L, et al . The influence of rest-grazing on the soil microbial community functional diversity of Stipa baicalensis Steppe. Acta Prataculturae Sinica, 2013, 22(6): 21-30. 浏览
[45]
Casamayor E O, Schäfer H, Bañeras L, et al . Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 2000, 66(2): 499-508.
[46]
Zhang Y W, Han J G, Han Y W, et al . The content of soil micro-biomass carbon and nitrogen of different grazing Intensities on Pasture. Acta Agrestia Sinica, 2003, 11(4): 343-346.
[47]
Li Q, Mayzlish E, Shamir I, et al . Impact of grazing on soil biota in a Mediterranean grassland. Land Degradation & Development, 2005, 16(6): 581-592.
[48]
Schwartz M W, Brigham C A, Hoeksema J D, et al . Linking biodiversity to ecosystem function: implications for conservation ecology. Oecologia, 2000, 122(3): 297-305.
[49]
Hughes A. Disturbance and diversity: an ecological chicken and egg problem. Nature Education Knowledge, 2012, 3(10): 48.
[50]
Nannipieri P, Ascher J, Ceccherini M, et al . Microbial diversity and soil functions. European Journal of Soil Science, 2003, 54(4): 655-670.
[51]
Insam H. Developments in soil microbiology since the mid 1960s. Geoderma, 2001, 100(3): 389-402.
[52]
Johnsen K, Jacobsen C S, Torsvik V, et al . Pesticide effects on bacterial diversity in agricultural soils-a review. Biology and Fertility of Soils, 2001, 33(6): 443-453.
[53]
Sugden A M. Diversity & ecosystem resilience. Science, 2000, 290(5490): 233-235.
[54]
Li Z Z, Zhu L B, Lin Y C, et al . Seasonal variation of soil bacterial community under different degrees of degradation of Hulunbuir grassland. Acta Ecologica Sinica, 2010, 30(11): 2883-2889.
[55]
Zhang H F, Li G, Song X L, et al . Functional diversity of soil microbial communities in Stipa baicalensis steppe in Inner Mongolia as affected by different land use patterns. Chinese Journal of Ecology, 2012, 31(5): 1143-1149.
[56]
Zhou W P, Xiang D, Hu W J, et al . Influences of long-term enclosure on the restoration of plant and AM fungal communities on grassland under different grazing intensities. Acta Ecologica Sinica, 2013, 33(11):3383-3393.
[57]
Zhou Y K, Zhang J N, Yang D L, et al . Phospholipid fatty acid analysis of microbial community structure under different land use patterns in soil ecosystems of Leymus chinensis steppes. Acta Prataculturae Sinica, 2011, 20(4): 27-33.
[58]
Patra A K, Abbadie L, Clays-Josserand A, et al . Effects of grazing on microbial functional groups involved in soil N dynamics. Ecological Monographs, 2005, 75(1): 65-80.
[59]
McCaig A E, Glover L A, Prosser J I. Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Applied and Environmental Microbiology, 1999, 65(4): 1721-1730.
[60]
Grayston S J, Griffith G S, Mawdsley J L, et al . Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biology and Biochemistry, 2001, 33(4): 533-551.
[61]
Wakelin S A, Gregg A L, Simpson R J, et al . Pasture management clearly affects soil microbial community structure and N-cycling bacteria. Pedobiologia, 2009, 52(4): 237-251.
[62]
Zhou X, Wang J, Hao Y, et al . Intermediate grazing intensities by sheep increase soil bacterial diversities in an Inner Mongolian steppe. Biology and Fertility of Soils, 2010, 46(8): 817-824.
[63]
Howe H F, Brown J S, Zorn-Arnold B. A rodent plague on prairie diversity. Ecology Letters, 2002, 5(1): 30-36.
[64]
Liu T Z, Nan Z B. Advances in nitrification and nitrifying bacteria in grassland soil. Pratacultural Science, 2011, 28(6): 951-958.
[65]
Lienhard P, Terrat S, Chemidlin N. Pyrosequencing evidences the impact of cropping on soil bacterial and fungal diversity in Laos tropical graddland. Agronomy for Sustainable Development, 2013, 34: 525-533.
[66]
Nacke H, Thürmer A, Wollherr A, et al . Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PloS One, 2011, 6(2): e17000.
[67]
Ford H, Rousk J, Garbutt A, et al . Grazing effects on microbial community composition, growth and nutrient cycling in salt marsh and sand dune grasslands. Biology and Fertility of Soils, 2013, 49(1): 89-98.
[68]
Schönborn W. Population dynamics and production biology of testate amoebae (Rhizopoda, Testacea) in raw humus of two coniferous forest soils. Archiv für Protistenkunde, 1986, 132(4): 325-342.
[69]
Gao Y, Zhu W, Chen W. Structure of the protozoan community in soil and its ecological functions. Chinese Journal of Ecology, 2000, 19(1): 59.
[70]
Visser S, Parkinson D. Soil biological criteria as indicators of soil quality: soil microorganisms. American Journal of Alternative Agriculture, 1992, 7(1-2): 33-37.
[71]
Øvreås L. Population and community level approaches for analysing microbial diversity in natural environments. Ecology Letters, 2000, 3(3): 236-251.
[72]
Clegg C D. Impact of cattle grazing and inorganic fertiliser additions to managed grasslands on the microbial community composition of soils. Applied Soil Ecology, 2006, 31(1): 73-82.
[73]
Bardgett R D, Jones A C, Jones D L, et al . Soil microbial community patterns related to the history and intensity of grazing in sub-montane ecosystems. Soil Biology and Biochemistry, 2001, 33(12): 1653-1664.
[74]
Frostegård Å, Tunlid A, Bååth E. use and misuse of PLFA measurements in soils. Soil Biology and Biochemistry, 2011, 43: 1621-1625.
[75]
Schoug Å, Fischer J, Heipieper H J, et al . Impact of fermentation pH and temperature on freeze-drying survival and membrane lipid composition of Lactobacillus coryniformis Si3. Journal of Industrial Microbiology & Biotechnology, 2008, 35(3): 175-181.
[76]
Nichols P, Stulp B K, Jones J G, et al . Comparison of fatty acid content and DNA homology of the filamentous gliding bacteria Vitreoscilla, Flexibacter, Filibacter. Archives of Microbiology, 1986, 146(1): 1-6.
[77]
Olsson P A. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiology Ecology, 1999, 29(4): 303-310.
[78]
Lin X G. Soil Microbial Research Principles and Methods[M]. Beijing: High Education Press, 2010.
[79]
Muyzer G, De Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 1993, 59(3): 695-700.
[80]
Bloem J, Breure A M. Microbial indicators. Trace Metals and other Contaminants in the Environment, 2003, 6: 259-282.
[81]
Ma Y X, Holmstrm C, Webb J. Application of denaturing gradient gel electrophoresis (DGGE) in microbial ecology. Acta Ecologica Sinica, 2003, 23(8): 1561-1569.