全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

风沙流频繁吹袭对樟子松幼苗光合水分代谢的影响

DOI: 10.11686/cyxb2014414, PP. 149-156

Keywords: 樟子松幼苗,风沙流,光合速率,蒸腾速率,水分利用效率

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了解风沙流频繁吹袭对樟子松幼苗光合水分代谢的影响,2013年在内蒙古科尔沁沙地研究了0(对照),6,9,12,15和18m/s等6个风速处理风沙流(风沙流强度相应为1.00,28.30,63.28,111.82和172.93g/cm·min)4次吹袭下3龄樟子松幼苗光合速率、蒸腾速率、水分利用效率等指标的变化规律。结果表明,1)频繁的风沙流吹袭,可以改变樟子松幼苗蒸腾速率、气孔导度、胞间CO2浓度和水分利用效率的日变化规律,但对光合速率日变化规律影响较小;2)随着风沙流强度的增加,其叶片相对含水量、叶面温度和日均光合速率、日均水分利用效率趋于下降,18m/s处理和对照相比分别下降4.6%,1.8%,52.6%和56.3%;日均蒸腾速率、日均气孔导度和胞间CO2浓度趋于增加,18m/s处理和对照相比分别增加31.6%,75.0%和30.9%;3)随着风沙流强度的增加,其日最大光合速率和日最大水分利用效率趋于下降,日最大胞间CO2浓度趋于增加,15m/s以下风沙流吹袭其日最大蒸腾速率降低,15m/s以上风沙流吹袭其日最大蒸腾速率显著增加;4)在风沙流吹袭下,樟子松光合能力的降低主要源于叶片含水量和叶片温度的下降以及叶片的机械损伤,而蒸腾速率的增加主要源于气孔导度的大幅度提升。

References

[1]  Kadib A A. Function for Sand Movement by Wind[M]. Berkeley: PN, 1965.
[2]  Yu Y J, Xin Y Y, Liu J Q. Effects of wind and wind-sand current on the physiological status of different sand-fixing plants. Acta Botanica Sinica, 1998, 40(10): 962-968.
[3]  Whitehead F H. Experimental studies on the effect of wind on plant growth and development: Helianthus annuus . New Phytologist, 1962, 61(1): 59-62.
[4]  Yu Y J, Shi P J, He L P, et al . Research on the effects of wind-sand current on the plant growth. Advance in Earth Sciences, 2002, 17(2): 262-267.
[5]  Li F R, Zhang H, Zhang T H. Variations of sand transportation rates in sandy grasslands along a desertification gradient in northern China. Catena, 2003, 53: 255-272.
[6]  Paul P H, Rebecca L. Simpson variable vegetation cover and episodic sand movement on longitudinal desert sand dunes. Geomorphology, 2006, 81(3-4): 276-291.
[7]  Monier M, Abd E G, Wafaa M A. Soil-vegetation relationships in a coastal desert plain of southern Sinai, Egypt. Journal of Arid Environments, 2003, 55(4): 607-628.
[8]  Liu Y, Schieving F, Stuefer J F, et al . The effects of mechanical stress and spectral shading on the growth and allocation of ten genotypes of a stoloniferous plant. Annals of Botany, 2007, 99(1): 121-130.
[9]  Zhao H L, He Y H, Yue G Y, et al . Effects of wind blow and sand burial on the seedling growth and photosynthetic and transpiration rates of desert plants. Chinese Journal of Ecology, 2010, 29(3): 413-419.
[10]  Qu H, Zhao X Y, Yue G Y, et al . physiological response to wind of some common plants in Horqin Sand Land. Journal of Desert Research, 2009, 29(4): 668-673.
[11]  Wang Y H, He W M, Yu F H, et al . Advances in the responses of plants to wind-induced mechanical stimulation. Acta Ecologica Sinica, 2010, 30(3): 0794-0800.
[12]  Yu Y J, Shi P J, Lu C X, et al . Response of the ecophysiological characteristics of some plants under blown sand. Acta Phytoecologica Sinica, 2003, 27(1): 53-58.
[13]  Zhao X L, Li W Y. Pinus sylvestnis var. mongolica [M]. Beijing: Agricultural Press, 1963.
[14]  Li H Y, Liu M G. The development status of Pinus sylvestris var. mongolica sand-fixation plantations. Journal of Liaoning Forestry Science& Technology, 2003, (5): 35-39.
[15]  Jiao S R. Review of afforestation technology of Pinus sylvestris var. mongolica . Protection Forest Science and Technology, 2010, (6): 52-54.
[16]  Wu C R, Jin H X, Yan Z Z, et al . Average photosynthesis variation of Pinus sylvesiris during a day in the arid and desert area. Journal of Arid Land Resources and Environment, 2003, 17(6): 144-146.
[17]  Zhu J J, Kang H Z, Li Z H. Impact of water stress on survival and photosynthesis of Mongolian pine seedlings on sandy land. Acta Ecologica Sinica, 2005, 25(10): 2527-2533.
[18]  Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 1982, 33: 317-345.
[19]  Russell G, Grace J. The effect of wind on grass v: Leaf extension, diffusive conductance, and photosynthesis in the wind tunnel. Journal of Experimental Botany, 1978, 29(5): 1249-1258.
[20]  Chen G Y, Chen J, Xu D Q. Thinking about the Relationship between net photosynthetic rate and intercellular CO 2 concentration. Plant Physiology Communications, 2010, 46(1): 64-66.
[21]  Telewski F W, Jaffe M J. Thigmom ophogenesis: Field and laboratory studies of Abiesfra seriin response to wind or mechanical perturbation. Physiologia Plantarum, 1986, 66(2): 211-218.
[22]  Mitchell C A. Recent advances in plant response to mechanical stress: Theory and Application. Hortscience, 1996, 31(1): 31-35.
[23]  Ennos A R. Wind as an ecological factor. Trends in Ecology & Evolution, 1997, 12(3): 108-111.
[24]  Grace J, Malcolm D C, Bradbury I K. The effect of wind and humidity on leaf diffusive resistance in Sitka spruce seedlings. Journal of Applied Ecology, 1975, 12(3): 931-940.
[25]  Grace J. Plant Response to Wind[M]. London: Academic Press, 1977.
[26]  Wang B X, Xu X, Li X F. Physiological and eco-physiological responses of Humulus scandens seedlings to chromium stress. Acta Prataculturae Sinica, 2014, 23(4): 181-189. 浏览
[27]  于云江, 辛越勇, 刘家琼. 风和风沙流对不同固沙植物生理状况的影响. 植物学报, 1998, 40(10): 962-968.
[28]  于云江, 史培军, 贺丽萍, 等. 风沙流对植物生长影响的研究. 地球科学进展, 2002, 17(2): 262-267.
[29]  赵哈林, 何玉慧, 岳广阳, 等. 风吹、沙埋对沙地植物幼苗生长和光合蒸腾特性的影响. 生态学杂志, 2010, 29(3): 413-419.
[30]  曲浩, 赵学勇, 岳广阳, 等. 科尔沁沙地几种常见植物对风胁迫的生理响应. 中国沙漠, 2009, 29(4): 668-673.
[31]  王艳红, 何维明, 于飞海, 等. 植物响应对风致机械刺激研究进展. 生态学报, 2010, 30(3): 0794-0800.
[32]  于云江, 史培军, 鲁春霞, 等. 不同风沙条件对几种植物生态生理特征的影响. 植物生态学报, 2003, 27(1): 53-58.
[33]  赵兴梁, 李万英. 樟子松[M]. 北京: 农业出版社, 1963.
[34]  李宏印, 刘明国. 樟子松人工固沙林发展现状. 辽宁林业科技, 2003, (5): 35-39.
[35]  焦树仁. 樟子松沙地造林技术综述. 防护林科技, 2010, (6): 52-54.
[36]  吴春荣, 金红喜, 严子柱, 等. 樟子松在西北干旱沙区的光合日变化特征. 干旱区资源与环境, 2003, 17(6): 144-146.
[37]  朱教君, 康宏樟, 李智辉. 水分胁迫对不同年龄沙地樟子松幼苗存活与光合特性影响. 生态学报, 2005, 25(10): 2527-2533.
[38]  陈根云, 陈娟, 许大全. 关于净光合速率和胞CO 2 浓度关系的思考. 植物生理学通讯, 2010, 46(1): 64-66.
[39]  王碧霞, 胥晓, 李霄锋. 葎草幼苗光合生理特性对铬胁迫的响应. 草业学报, 2014, 23(4): 181-189. 浏览

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133