全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

紫花苜蓿种子萌发对钴胁迫的生理生化响应

DOI: 10.11686/cyxb2015148, PP. 146-153

Keywords: 钴胁迫,紫花苜蓿,种子萌发,幼苗生长,抗氧化酶,渗透调节,活性氧

Full-Text   Cite this paper   Add to My Lib

Abstract:

以“甘农3号”紫花苜蓿为试验材料,研究不同浓度Co2+(0,0.25,0.50,1.00,2.50,5.00mmol/LCoCl2)胁迫对紫花苜蓿种子萌发及幼苗生理生化特性的影响。结果表明:Co胁迫对紫花苜蓿种子的萌发及幼苗的生长有明显的抑制作用,随着Co胁迫浓度的增大,种子发芽势、发芽率、发芽指数、活力指数及幼苗的胚芽长、胚根长、根系活力和干重均显著降低,而且Co胁迫对发芽势的抑制作用大于发芽率,对胚根生长的抑制作用大于胚芽;低浓度Co胁迫(0.25和0.50mmol/L)下,苜蓿幼苗叶片中可溶性蛋白、可溶性糖含量和蛋白水解酶、超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、愈创木酚过氧化物酶(GPX)、过氧化氢酶(CAT)活性与CK均无显著差异,而游离脯氨酸含量显著升高;随着Co胁迫浓度的升高,可溶性蛋白、可溶性糖、游离脯氨酸含量及蛋白水解酶、SOD、APX、GPX、CAT活性均显著下降,超氧阴离子自由基(O2·-)产生速率、羟自由基(OH·)浓度、H2O2及丙二醛(MDA)含量均显著增加。说明高浓度Co胁迫使得苜蓿幼苗抗氧化系统活性下降,活性氧清除能力降低,膜脂过氧化程度加剧,从而抑制了紫花苜蓿种子的萌发及幼苗的生长。

References

[1]  Chaney R L, Malik M, Li Y M, et al . Phytoremediation of soil metals. Current Opinions in Biotechnology, 1997, 8: 279-284.
[2]  Meng Y X, Wang S H, Wang J C, et al . Influences of CoCl 2 on the growth and seedling physiological indexes of Hordeum vulgare under NaCl stress. Acta Prataculturae Sinica, 2014, 23(3): 160-166. 浏览
[3]  Locke J M, Bryce J H, Morris P C. Contrasting effects of ethylene perception and biosynthesis inhibitors on germination and seedling growth of barley ( Hordeum vulgare L.) . Journal of Experimental Botany, 2000, 51: 1843-1849.
[4]  Hansen H, Larssen T, Seip H M, et al . Trace metals in soils at four sites in southern china. Water, Air, and Soil Pollution, 2001, 130: 1721-1726.
[5]  Hewitt E J. Effect of mineral deficiencies and excesses on growth and composition. In: Bould C, Hewitt E J, Needham P, et al . Diagnosis of Mineral Disorders in Plants[M]. London: Prinipals,1983: 54-110.
[6]  Xing G X, Zhu J G. Soil Trace Elements and Rare Earth Elements Chemistry[M]. Beijing: Science Press, 2003.
[7]  China National Environmental Monitoring Centre. China Background Value of Soil Elements[M]. Beijing: China Environmental Science Press, 1990.
[8]  Wang Y, Wei F S H. Soil Environmental Elements Chemistry[M]. Beijing: China Environmental Science Press, 1995.
[9]  Guo X, Jie X M, Li M, et al . Effects of selenium and cobalt fertilization on nutrition levels of alfalfa hay. Plant Nutrition and Fertilizer Science, 2010, 16(2): 439-448.
[10]  Aery A C, Jagetiya B L. Effect of cobalt treatments on dry matter production of wheat and DTPA extractable cobalt content in soils. Communications in Soil Science and plant Analysis, 2002, 31: 9-10.
[11]  Zou Q. Plant Physiology Experiment Guidance[M]. Beijing: China Agriculture Press, 2000.
[12]  Zhang Z G, Rui Q, Xu L L. Relationship between endopeptidases and H 2 O 2 during wheat leaves aging. Acta Botany Sinica, 2001, 43: 127-131.
[13]  André Dias de Azevedo Neto, José Tarquinio Prisco, Joaquim Enéas-Filho, et al . Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. Journal of Plant Physiology, 2005, 162: 1114-1122.
[14]  Kou J T, Shi S L, Hu G X, et al . Effect of Odontothrips loti on reactive oxygen metabolism of Medicago sativa . Journal of Nuclear Agricultural Sciences, 2013, 27(12): 1948-1954.
[15]  Zhou W H, Shi S L, Kou J T. Effect of nitric oxide on alfalfa seed germination under NaCl stress. Journal of Nuclear Agricultural Sciences, 2012, 26(4): 710-716.
[16]  Ding Y, Xie H R, Wei Q, et al . Impacts of heavy metal stress on alfalfa germination. Journal of Nanchang Institute of Aeronautical Technology (Natural Science), 2004, 18(4): 45-47, 53.
[17]  Zhang C R, Li H, Xia L J, et al . Effect of zinc cadmium germination of Medicago sativa seeds and growth of seeding. Acta Agriculturae Boreali-sinica, 2005, 20(1): 96-99.
[18]  Yu Y H, Wang W Q, Zheng C X, et al . The effect of Pb 2+ , Ca 2+ & Cd 2+ in soil on sprout and growth of alfalfa seeds. Journal of Xinjiang Agricultural University, 2006, 29(2): 58-61.
[19]  Ci E, Gao M, Wang Z F, et al . Effects of cadmium on seed germination and growth of alfalfa. Chinese Journal of Eco-Agriculture, 2007, 15(1): 96-98.
[20]  Gegg M E, Beltran B, Salas-Pino S, et al . Differential effect of nitric oxide on glutathione metabolism and mitochondrial function in astrocytes and neurons: implications for neuroprotection/neurodegeneration. Journal of Neurochemistry, 2003, 86(1): 228-237.
[21]  Zhou W H, Shi S L, Kou J T. Effects of exogenous nitric oxide on the growth and nitrogen metabolism of alfalfa seedlings under salt stress. Chinese Journal of Applied Ecology, 2012, 23(11): 3003-3008.
[22]  Poustini K, Siosemardeh A, Ranjbar M. Proline accumulation as a response to salt stress in 30 wheat ( Triticum aestivum L.)cultivars differing in salt tolerance. Genetic Resources and Crop Evolution, 2007, 54: 925-934.
[23]  He Z L, Wang H C. The emergence of salt-induced proteins in alfalfa under NaCl stress. Acta Phytophysiologica Sinica, 1991, 17: 71-79.
[24]  Hong R Y, Yang G X, Liu D H, et al . Effects of cadmium on the growth and physiological and biochemical reactions of wheat seedlings. Acta Agriculturae Boreali-sinica, 1991, 6(3): 70-75.
[25]  Zhou W H, Shi S L, Kou J T. Exogenous salicylic acid on alleviating salt stress in alfalfa seedlings. Acta Prataculturae Sinica, 2012, 21(3): 171-176. 浏览
[26]  Zhao T H, Sun J W, Fu Y. Advances of research on metabolism of plant reactive oxygen species and exogenous regulation under abiotic stresse. Corps, 2008, 3: 10-13.
[27]  Wang S H, Zhang H, He Q Y. Effects of copper stress on Medicago sativa seedlings leaf antioxidative system. Chinese Journal of Applied Ecology, 2011, 22(9): 2285-2290.
[28]  孟亚雄, 王世红, 汪军成, 等. CoCl 2 对NaCl胁迫下大麦生长及幼苗生理指标的影响. 草业学报, 2014, 23(3): 160-166. 浏览
[29]  邢光熹, 朱建国. 土壤微量元素和稀土元素化学[M]. 北京: 科学出版社, 2003.
[30]  中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
[31]  王云, 魏复盛. 土壤环境元素化学[M]. 北京: 中国环境科学出版社, 1995.
[32]  郭孝, 介晓磊, 李明, 等. 硒、钴对苜蓿青干草营养水平影响的研究. 植物营养与肥料学报, 2010, 16(2): 439-448.
[33]  邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000.
[34]  寇江涛, 师尚礼, 胡桂馨, 等. 牛角花齿蓟马为害对紫花苜蓿活性氧代谢的影响. 核农学报, 2013, 27(12): 1948-1954.
[35]  周万海, 师尚礼, 寇江涛. 一氧化氮对NaCl胁迫下苜蓿种子萌发的影响. 核农学报, 2012, 26(4): 710-716.
[36]  丁园, 谢海荣, 魏洽, 等. 重金属胁迫对紫花苜蓿种子萌发的影响. 南昌航空工业学院学报(自然科学版), 2004, 18(4): 45-47, 53.
[37]  张春荣, 李红, 夏立江, 等. 镉、锌对紫花苜蓿种子萌发及幼苗的影响.华北农学报, 2005, 20(1): 96-99.
[38]  余艳华, 王文全, 郑春霞, 等. 土壤中Pb 2+ ,Ca 2+ ,Cd 2+ 对苜蓿种子发芽和生长的影响. 新疆农业大学学报, 2006, 29(2): 58-61.
[39]  慈恩, 高明, 王子芳, 等. 镉对紫花苜蓿种子萌发与幼苗生长的影响研究.中国生态农业学报, 2007, 15(1): 96-98.
[40]  周万海, 师尚礼, 寇江涛. 盐胁迫下外源NO对苜蓿幼苗生长及氮代谢的影响. 应用生态学报, 2012, 23(11): 3003-3008.
[41]  贺志理, 王洪春. 盐胁迫下苜蓿中盐蛋白的诱导产生. 植物生理学报, 1991, 17: 71-79.
[42]  洪仁远, 杨广笑, 刘东华, 等. 镉对小麦幼苗的生长和生理生化反应的影响. 华北农学报, 1991, 6(3): 70-75.
[43]  周万海, 师尚礼, 寇江涛. 外源水杨酸对苜蓿幼苗盐胁迫的缓解效应. 草业学报, 2012, 21(3): 171-176. 浏览
[44]  赵天宏, 孙加伟, 付宇. 逆境胁迫下植物活性氧代谢及外源调控机理的研究进展. 作物杂志, 2008, 3: 10-13.
[45]  王松华, 张华, 何庆元. 铜胁迫对紫花苜蓿幼苗叶片抗氧化系统的影响. 应用生态学报, 2011, 22(9): 2285-2290.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133