全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

不同水分环境下小麦粒重QTL定位及遗传分析

DOI: 10.11686/cyxb2015071, PP. 118-129

Keywords: 小麦,干旱胁迫,千粒重,QTL定位,环境互作

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探讨小麦千粒重(TGW)分子数量性状遗传,及QTL与水分环境互作关系,本文以抗旱性强的冬小麦品种陇鉴19与水地高产品种Q9086杂交创建的重组近交系(recombinantinbredlines,RIL)群体120个株系为供试材料,采用条件复合区间作图法对3个环境不同水分条件下TGW进行QTL定位和遗传分析。结果表明,小麦RIL群体TGW对水分环境反应敏感,群体中各株系呈现广泛变异和超亲分离,属于微效多基因控制的复杂数量性状,易受水分环境影响。共检测到19个和38对控制TGW的加性QTL(A-QTL)和上位性QTL(AA-QTL),分布在除1A、3B、4D和6A以外的其他17条染色体上。这些A-QTL和AA-QTL表达通过正向或负向调控影响TGW表型变异,贡献率分别在1.24%~10.94%和0.38%~2.89%。发现了3个多环境均能稳定表达的A-QTL(Qtgw.acs-1B.1,Qtgw.acs-2A.1和Qtgw.acs-4A.1),以及4个A-QTL热点区域[Xmag2064-Xbarc181(1B),Xwmc522-Xgwn122(2A),Xwmc446-Xgwm610(4A)和Xwmc603-Xbarc195(7A)]。所检测到的A-QTL和AA-QTL与干旱胁迫环境互作普遍负向调控TGW表型。加性效应和加性与环境的互作效应是决定小麦TGW的主要遗传因子。在干旱胁迫条件下,这种遗传主效应均不同程度降低TGW表型。本研究结果可为小麦抗旱遗传改良和分子标记辅助选择育种奠定理论基础。

References

[1]  Li G, Wu S G, Wu C X, et al . Research advances on resistance of barnyard grass ( Echinochloa crusgalli ) to quinclorac. Weed Science, 2012, 30(2): 1-5.
[2]  Liu S B, Zhou R H, Dong Y C, et al . Development, utilization of introgression lines using a synthetic wheat as donor. Theoretical and Applied Genetics, 2006, 112: 1360-1373.
[3]  Didon U M E, Boström U. Growth and development of six barley ( Hordeum vulgare ssp. vulgare L.) cultivars in response to a model weed ( Sinapis alba L.). Journal of Agronomy and Crop Science, 2003, 189: 409-417.
[4]  Xu Z H, Yu L Q, Zhao M, et al . Competition and allelopathy of rice with barnyardgrass. Chinese Journal Rice Science, 2003, 17(1): 67-72.
[5]  Ma G L, Bai L Y, Liu D C. Resistance of Echinochloa crusgalli (L.) Beauv. to quinclorac in the rice growing region of the middle and lower reaches of Yangtze River in China. Chinese Journal Rice Science, 2013, 27(2): 184-190.
[6]  Li S H, Jia J Z, Wei X Y, et al . A intervarietal genetic map and QTL analysis for yield traits in wheat. Molecular Breeding, 2007, 20: 167-178.
[7]  Murphy K M, Dawson J C, Jones S S. Relationship among phenotypic growth traits, yield and weed suppression in spring wheat landraces and modern cultivars. Field Crops Research, 2008, 105: 107-115.
[8]  Chung I M, Kim K H, Ahn J K, et al . Screening of allelochemicals on barnyard grass ( Echinochloa crus-galli ) and identification of potentially allelopathic compounds from rice ( Oryza sativa ) variety hull extracts. Crop Protection, 2002, 21: 913-920.
[9]  Huang X Q, Kempf H, Ganal M W, et al . Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat ( Triticum aestivum L.). Theoretical and Applied Genetics, 2004, 109: 933-943.
[10]  Marambe B, Amarasinghe L. Propanil-resistant barnyardgrass [ Echinochloa crus-galli (L.) Beauv.] in Sri Lanka: seedling growth under different temperatures and control. Weed Biology and Management, 2002, 2: 194-199.
[11]  Chen W, Xue L. Root interactions: competition and facilitation. Acta Ecologica Sinica, 2004, 24(6):1243-1251.
[12]  Börner A, Schumann E, Fürste A, et al . Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat ( Triticum aestivum L.). Theoretical and Applied Genetics, 2002, 105: 921-936.
[13]  Talbert R E, Burgos N R.History and management of herbicide-resistant bamyardgrass ( Echinochloa crus-galli ) in Arkansas rice. Weed Technology, 2007, 21: 324-331.
[14]  Gong Q W, Li P, Li L F, et al . Effects of transplanted barnyardgrass ( Echinochloa crus-galli ) on growth and yield of rice. Chinese Journal Rice Science, 1995, 9(2): 103-107.
[15]  Kwon S L, Smith R J, Talbert R E. Interference and duration of red rice ( Oryza sativa L.) in rice ( Oryza sativa ). Weed Science, 1991, 39: 363-368.
[16]  Röder M S, Huang X Q, Börner A. Fine mapping of the region on wheat chromosome 7D controlling grain weight. Functional & Integrative Genomics, 2008, 8: 79-86.
[17]  Yang X Y, Jiang Q Q, Tang J J, et al . Effects of simulated nitrogen deposition on competition of weedy species ( Echinochloa crus-galli var. mitis L.) and upland rice ( Oryza sativa L. ) under different air temperatures. Chinese Journal of Applied Ecology, 2007, 18(4): 848-852.
[18]  Duke S O. Allelopathy: current status of research and future of the discipline: a commentary. Allelopathy Journal, 2010, 25: 17-30.
[19]  Wu S G, Wang Q, Zhao X P. Biological characteristics of barnyard grass in paddy field and its integrated control. Weed Science, 2006, 24(4): 1-7.
[20]  Li W F, Liu B, Peng T, et al . Detection of QTL for kernel weight, grain size, and grain hardness in wheat using DH and immortalized F2 population. Scientia Agricultura Sinica, 2012, 45(17): 3453-3462.
[21]  Han H H, Zhou Y J, Chen X, et al . Inhibitory effects of mixed-planting of rice varieties with different weed-tolerant potentials on Echinochloa crus-galli . Chinese Journal Rice Science, 2007, 21(3): 319-322.
[22]  Inderjit. Experimental complexities in evaluating the allelopathic activities in laboratory bioassays: A case study. Soil Biology & Biochemistry, 2006, 38: 256-262.
[23]  Zhou P, Guo S L, Yin L P. Status of research on taxonomy and systematics of the genus Echinochloa . Weed Science, 2013, 31(1): 1-4.
[24]  Zhang K P, Xu X B, Tian J C. QTL mapping for grain yield and spike related traits in common wheat. Acta Agronomica Sinica, 2009, 35(2): 270-278.
[25]  Liu Z Y, Sei-ji T. Studies on the competitive relations of rice and barnyardgrass in fields. Plant Protection, 2000, 26(6): 9-11.
[26]  Ma Y Q, Liu D L, Lovett J V. Weed allelopathy and its utilization in biological control of weeds. Chinese Journal of Ecology, 1991, 10(5): 46-49.
[27]  Wu S J, Li X L, Tang F L. Studies of biological traits and karyotype of two barnyard grass variety. Acta Prataculturae Sinica, 2011, 20(3): 198-204.
[28]  Wang R X, Zhang X Y, Wu L, et al . QTL analysis of grain size and related traits in winter wheat under different ecological environments. Scientia Agricultura Sinica, 2009, 42(2): 398-407.
[29]  Zhu W D. Influence of barnyardgrass, Echinochloa crusgalli , on the growth and yield of paddy rice and its economic threshold. Acta Phytophylacica Sinica, 2005, 32(1): 81-86.
[30]  Dilday R H, Mattice J D, Moldenhauer K A. Rice Allelopathy[M]. Taegu, Korea: Kyungpook National University Press, 2000: 15-26.
[31]  Zhao Q L, Wu X, Yuan S J, et al . A study on the dynamics of phosphorus adsorption and desorption characteristics of paddy soil with long-term fertilization. Acta Prataculturae Sinica, 2014, 23(1): 113-122.
[32]  Li L, Yang D L, Li M F, et al . Effects of source-sink regulation on WSC in vegetative organs and thousand-grain mass of wheat under different water conditions. Chinese Journal of Applied Ecology, 2013, 24(7): 1879-1888.
[33]  Zhang J Z, Zhao C C, Cui S S. Study on the harm of barnyard grass in paddy field and its economic threshold model. Weed Science, 1993, 11(1): 10-12.
[34]  Hu F, Kong C H, Xu X H, et al . Weed-suppressing effect and its mechanism of allelopathic rice accessions. Scientia Agricultura Sinica, 2004, 37(8): 1160-1165.
[35]  Rogozhin E A, Odintsova T I, Musolyamov A N, et al . The purification and characterization of a novel lipid transfer protein from caryopsis of barnyard grass ( Echinochloa crusgalli ). Applied Biochemistry and Microbiology, 2009, 45(4): 363-368.
[36]  Ma Z P, Li M F, Yang D L, et al . Relationship between grain filling and accumulation and remobilization of water soluble carbohydrates in leaf and stem of winter wheat during the grain filling in different water conditions. Acta Prataculturae Sinica, 2014, 23(4): 68-78.
[37]  Guan L Q, Chen J S, Chen G X. Harm of barnyard grass and water sedge in water field of direct seeding rice and its complex control index. Acta Agriculturae Shanghai, 2001, 17(2): 79-81.
[38]  Wu C X, Liu S J, Zhao G Q. Isolation and identification of the potential allelochemicals in the aqueous extract of yellow sweet clover ( Melilotus officinalis ). Acta Prataculturae Sinica, 2014, 23(5): 184-192.
[39]  Zhang Y L, Qin L Q, Gao X X, et al . Research on allelopathic effects of Allium macrostemon on three main weeds ( Digitaria sanguinalis , Echinochloa crusgalli and Amaranthus retroflexus ) in peanut fields. Acta Prataculturae Sinica, 2010, 19(5): 57-62.
[40]  Zhang G H, Yang D L, Li M F, et al . Genetic analysis of QTL mapping for developmental behaviors of plant height and QTL×water regimes interactions in wheat. Journal of Agricultural Biotechnology, 2012, 20(9): 996-1008.
[41]  Li B T, Zhang J Z, Wu J F, et al . Effects of techniques of paddy field production mechanization on diseases, insect pests, weeds and yield of double-cropping rice. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(19): 71-78.
[42]  Liu C, Chen X D, Wu M, et al . Allelopathic effects of Phragmites communis leaves on the growth and physiobiochemical characteristics of Solidago canadensis . Acta Prataculturae Sinica, 2014, 23(3): 182-190.
[43]  Wan S Q, Yang S J. Growth inhibition and action target of photo-activation induced by synthetic polyacetylenes against Echinochtoa crusgalli . Acta Phytophylacica Sinica, 2004, 31(3): 299-304.
[44]  Xue S, Zhang Z, Lin F, et al . A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theoretical and Applied Genetics, 2008, 117: 181-189.
[45]  Jome L L, Martin J K. Application of on ecophysiological model for irrigated rice ( Oryza sativa ) - Echinochloa competition . Weed Science, 1996, 44: 52-56.
[46]  Baziramakenga R, Leroux G D, Simard R R. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. Journal of Chemical Ecology, 1995, 21: 1271-1285.
[47]  Kim J S, Oh J I, Kim T J, et al . Physiological basis of differential phytotoxic activity between fenoxaprop-P-ethyl and cyhalofop-butyl-treated barnyard grass. Weed Biology and Management, 2005, 5(2): 39-45.
[48]  Yu J K, Dake T M, Singh S, et al . Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome, 2004, 47: 805-818.
[49]  Holst N, Rasmussen I A, Bastiaans L. Field weed population dynamics: a review of model approaches and applications. Weed Research, 2007, 47(1): 1-14.
[50]  Lin W X, He H Q, Guo Y C, et al . Rice allelopathy and its physiobiochemical characteristics. Chinese Journal of Applied Ecology, 2001, 12(6): 871-875.
[51]  Li J, Wei T, Sun A R, et al . Evaluation of curvularia lunata strain B6 as a potential mycoherbicide to control barnydrgrass Echinochloa crus-galli . Journal of Integrative Agriculture, 2013, 12(7): 1201-1207.
[52]  Toker C. Estimates of broad-sense heritability for seed yield and yield criteria in faba bean ( Vicia faba L.). Hereditas, 2004, 140: 222-225.
[53]  Yu D Z, Wei S H, Zhu W D, et al . Influence of Alternanthera philoxeroides on the growth of paddy rice and its economic threshold. Acta Phytophylacica Sinica, 2008, 35(1): 69-73.
[54]  Zheng J Y, Yue Z H, Tian Y, et al . Allelopathy of Equisetum arvense extract on seed germination and seedling growth of wheat. Acta Prataculturae Sinica, 2014, 23(3): 191-196.
[55]  Li G, Wu S G, Wu C X, et al . Research advances on resistance of barnyard grass ( Echinochloa crusgalli ) to quinclorac. Weed Science, 2012, 30(2): 1-5.
[56]  Wang D L, Zhu J, Li Z K, et al . Mapping QTLs with epistatic effects and QTL×environment interaction by mixed linear model approaches. Theoretical and Applied Genetics, 1999, 99: 1255-1264.
[57]  Xie Z J, Xu C X, Liu G R, et al . Effects of different doses of bensulfuren-methyl·butachlor and quinclorac on the growing environment and nutrient accumulation of Chinese milk vetch. Acta Prataculturae Sinica, 2014, 23(5): 201-207.
[58]  Li Y R. The biochemical interaction of plant. Soils, 1993, 25(5): 248-251.
[59]  Ma G L, Bai L Y, Liu D C. Resistance of Echinochloa crusgalli (L.) Beauv. to quinclorac in the rice growing region of the middle and lower reaches of Yangtze River in China. Chinese Journal Rice Science, 2013, 27(2): 184-190.
[60]  Somers D J, Isaac P, Edwards K. A high-density wheat microsatellite consensus map for bread wheat ( Triticum aestivum L.). Theoretical and Applied Genetics, 2004, 109: 1105-1114.
[61]  Ma Y Y, Li Y F, Cheng Y F, et al . Effects of different chemical treatments on fermentation characteristics of rice straw in vitro. Acta Prataculturae Sinica, 2014, 23(3): 350-355.
[62]  Mohler C L. Ecological Management of Agricultural Weeds[M]. UK, Cambridge: Cambridge University Press, 2001: 444-493.
[63]  徐正浩, 余柳青, 赵明, 等.水稻与无芒稗的竞争和化感作用. 中国水稻科学, 2003, 17(1):67-72.
[64]  江荣昌. 稗草主要生物学特性及其防治. 植物生态学与地植物学学报, 1991, 15(4): 366-373.
[65]  周平, 郭水良, 印丽萍. 稗属植物的分类与系统学研究概况. 杂草科学, 2013, 31(1): 1-4.
[66]  Zhang L H, Xu M F. An analysis of genetic effects on harvest index and several other agronomic characteristics of wheat. Acta Agriculturae Nuleatae Sinica, 1997, 11(3): 135-140.
[67]  王瑞霞. 不同生态环境下小麦籽粒灌浆速率及有关性状的QTL定位分析[D]. 北京: 中国农业科学院, 2008.
[68]  吴姝菊, 李新玲, 唐凤兰. 大头稗(005)与鹅头稗(031)的生物学性状与细胞学研究. 草业学报, 2011, 20(3): 198-204.
[69]  鲁清林, 柴守玺, 张礼军, 等. 冬小麦叶片和非叶器官对粒重的贡献. 草业学报, 2013, 22(5): 165-174. 浏览
[70]  庄巧生. 中国小麦品种改良及系谱分析[M]. 北京: 中国农业出版社, 2003: 502.
[71]  Marambe B, Amarasinghe L. Propanil-resistant barnyardgrass [ Echinochloa crus-galli (L.) Beauv.] in Sri Lanka: seedling growth under different temperatures and control. Weed Biology and Management, 2002, 2: 194-199.
[72]  赵庆雷, 吴修, 袁守江, 等. 长期不同施肥模式下稻田土壤磷吸附与解吸的动态研究. 草业学报, 2014, 23(1): 113-122. 浏览
[73]  杨德龙, 张国宏, 李兴茂, 等. 小麦重组近交系群体株高和千粒重的抗旱遗传特性. 应用生态学报, 2012, 23(6): 1569-1576.
[74]  张悦丽, 秦立琴, 高兴祥, 等. 小根蒜对花生田3种主要杂草马唐、稗草和反枝苋的化感作用. 草业学报, 2010, 19(5): 57-62. 浏览
[75]  王瑞霞, 张秀英, 吴科, 等. 多个环境下小麦千粒重QTL定位的稳定性分析. 麦类作物学报, 2012, 32(1): 1-6.
[76]  廖祥政, 王瑾, 周荣华, 等. 发掘人工合成小麦中千粒重QTL 的有利等位基因. 作物学报, 2008, 34(11): 1877-1884.
[77]  Albrecht H, Auerswald K. Arable weed seedbanks and their relation to soil properties. Aspects of Applied Biology, 2003, 69: 11-20.
[78]  万树青, 杨淑娟. 多炔类化合物对稗草光活化生长抑制活性及作用靶标. 植物保护学报, 2004, 31(3): 299-304.
[79]  李文福, 刘宾, 彭涛, 等. 利用DH 和IF 2 两个群体进行小麦粒重、粒型和硬度的QTL分析. 中国农业科学, 2012, 45(17): 3453-3462.
[80]  李岗, 吴声敢, 吴长兴, 等. 稗草对二氯喹啉酸抗性研究进展.杂草科学, 2012, 30(2): 1-5.
[81]  张坤普, 徐宪斌, 田纪春. 小麦籽粒产量及穗部相关性状的QTL定位. 作物学报, 2009, 35(2): 270-278.
[82]  王瑞霞, 张秀英, 伍玲, 等. 不同生态环境下冬小麦籽粒大小相关性状的QTL分析. 中国农业科学, 2009, 42(2): 398-407.
[83]  李丽, 杨德龙, 栗孟飞, 等. 不同水分条件下源库调节对小麦营养器官WSC及籽粒千粒重的影响. 应用生态学报, 2013, 24(7): 1879-1888.
[84]  马召朋, 栗孟飞, 杨德龙, 等. 不同水分条件下冬小麦灌浆期茎叶可溶性碳水化合物积累转运与籽粒灌浆的关系. 草业学报, 2014, 23(4): 68-78. 浏览
[85]  Talbert R E, Burgos N R.History and management of herbicide-resistant bamyardgrass ( Echinochloa crus-galli ) in Arkansas rice. Weed Technology, 2007, 21: 324-331.
[86]  张国宏, 杨德龙, 栗孟飞,等. 小麦株高发育动态QTL定位及其与水分环境互作遗传分析. 农业生物技术学报, 2012, 20(9): 996-1008.
[87]  张利华, 许梅芬. 小麦收获指数和其它几个农艺性状的基因效应分析. 核农学报, 1997, 11(3): 135-140.
[88]  Dieleman J A, Mortensen D A, Buhler D D, et al . Identifying associations among site properties and weed species abundance. I. Multivariate analysis. Weed Science, 2000, 48: 567-575.
[89]  Jiang R C. Studies on the biological characteristic of Echinochloa crus-galli and its control methods. Acta Phytoecologicaet Geobotanica Sinica, 1991, 15(4): 366-373.
[90]  龚庆维, 李璞, 李联芳. 夹蔸稗对水稻生长和产量的影响. 中国水稻科学, 1995, 9(2): 103-107.
[91]  吴声敢, 王强, 赵学平. 稻田稗草生物学特性及其综合防除. 杂草科学, 2006, 24(4): 1-7.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133