全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

二斑叶螨抗甲氰菊酯种群解毒酶基因表达分析

DOI: 10.11686/cyxb2014321, PP. 150-158

Keywords: 二斑叶螨,甲氰菊酯,解毒酶,表达水平,qRT-PCR

Full-Text   Cite this paper   Add to My Lib

Abstract:

基因mRNA水平相对表达量的显著变化是二斑叶螨对拟除虫菊酯类药剂产生抗性的重要机制。为了揭示二斑叶螨对甲氰菊酯抗性产生的解毒酶分子机理,本研究采用实时荧光定量PCR(quantitativerealtimePCR,qRT-PCR)方法分析二斑叶螨实验室敏感(SS)和田间种群(LZ-R、GN-R、WW-R、TS-R和LX-R)主要解毒酶谷胱甘肽转移酶(glutathiones-transferases,GSTs)、细胞色素P450单加氧酶(cytocheomeP450monooxygenases,P450s)及羧酸酯酶(carboxyl/cholinesterases,CCEs)基因mRNA水平相对表达量的差异。结果表明,二斑叶螨不同种群不同解毒酶基因的相对表达量不同。WW-R和TS-R种群中TuGSTd05以及LX-R种群中TuGSTd01和TuGSTd06基因表达量均显著上调,为SS种群的1.42~2.34倍,而GN-R种群中TuGSTd04,LZ-R种群中TuGSTd05和GSTd09表达量显著下调,为SS种群的0.41~0.70倍;P450s基因CYP406A1和CYP4CL1表达量在LZ-R、GN-R以及WW-R种群中均显著上调,分别为SS种群的1.80~4.88倍,此外,CYP387A1在LZ-R种群中显著上调2.19倍,而在LX-R种群中显著下调0.42倍;CCEs基因TuCCE-35表达量在WW-R和TS-R种群中显著上调,分别为SS种群的2.82和3.09倍,而TuCCE-36基因在所有种群中的表达量均不显著。二斑叶螨不同种群中解毒酶基因GSTs、P450s和CCEs的显著上调或下调可能与甲氰菊酯的抗性形成有关。

References

[1]  Christensen S. Weed suppression ability of spring barley varieties. Weed Research, 1995, 35: 241-247.
[2]  Yang S Y, Yue X L, Wang J J, et al . Testing two methods to detect voltage-gated sodium channels gene mutation in Tetranychus urticae . Acta Prataculturae Sinica, 2014, 23(5):153-160.
[3]  Wang L X, Li J. Science of Farm System[M]. Beijing: Science Press, 2003: 278-279.
[4]  Seavers G P, Wright K J. Crop canopy development and structure influence weed suppression. Weed Research, 1999, 39: 319-328.
[5]  Zhang Z P. Advances in cropland weed management in China. Plant Protection, 2004, 30(2): 28-33.
[6]  Song D M, Ma D R, Yang Q, et al . Effects of weedy rice on yield and quality and micro-ecological environment in cultivated Japonica rice population. Acta Agronomica Sinica, 2009, 35(5): 914-920.
[7]  Van Leeuwen T, Dermauw W, Grbic M, et al . Spider mite control and resistance management: does a genome help. Pest Management Science, 2013, 69(2): 156-159.
[8]  Pester T A, Burnside O C, Orf J H. Increasing crop competitiveness to weeds through crop breeding. Journal of Crop Production, 1999, 2: 31-58.
[9]  Tu H L. Development in research and controlling of weeds in the fields of China. Pesticide, 2001, 40(3): 1-3.
[10]  Huang G B, Chai Q. Acting formations and applying development of allelopathy. Chinese Journal of Eco-Agriculture, 2003, 11(3): 172-174.
[11]  Jia X P, Ye X Q, Liang L J, et al . Transcriptome characteristics of Paspalum vaginatum analyzed with Illumina seguencing technology. Acta Prataculturae Sinica, 2014, 23(6): 242-252.
[12]  Mason H E, Navabi A, Frick B L, et al . The weed-competitive ability of Canada western red spring wheat cultivars grown under organic management. Crop Science, 2007, 47: 1167-1176.
[13]  Zhang C X, Hu X E, Qian Y X. Trend of herbicide use in developed countries and current research and future directions in weed science research in China. Acta Phytophylacica Sinica, 1997, 24(3): 278-282.
[14]  Zhang J, Song L L, Guo D L, et al . Genome-wide identification and investigation of the MADS-box gene family in Medicago truncatula . Acta Prataculturae Sinica, 2014, 23(6): 233-241.
[15]  张廷伟, 沈慧敏, 钱秀娟, 等. 二斑叶螨刺吸胁迫对白三叶叶绿素含量和两种保护酶的影响. 应用昆虫学报, 2013, 50(2): 395-400.
[16]  贺达汉, 赵晓萍, 靳巧红, 等. 宁夏地区二斑叶螨的寄主植物选择及其季节转移. 环境与应用生物学报, 2001, 7(5): 447-451.
[17]  高新菊, 沈慧敏. 二斑叶螨对甲氰菊酯的抗性选育及解毒酶活力变化. 昆虫学报, 2011, 54(1): 64-69.
[18]  段辛乐, 张志刚, 高新菊, 等. 二斑叶螨对甲氰菊酯和螺螨酯的抗性选育及增效剂的增效作用. 植物保护, 2011, 37(5): 106-109.
[19]  高新菊. 二斑叶螨对甲氰菊酯的抗性机理研究[D]. 兰州:甘肃农业大学, 2012.
[20]  Didon U M E. Variation between barley cultivars in early response to weed competition. Journal of Agronomy and Crop Science, 2002, 18: 176-184.
[21]  杨顺义, 岳秀利, 王进军, 等. 两种方法在二斑叶螨电压门控钠离子通道基因突变检测中的应用. 草业学报, 2014, 23(5):153-160. 浏览
[22]  贾新平, 叶晓青, 梁丽建, 等. 基于高通量测序的海滨雀稗转录组学研究. 草业学报, 2014, 23(6):242-252. 浏览
[23]  张军, 宋丽莉, 郭东林, 等. MADS-box基因家族在蒺藜苜蓿的全基因组分析. 草业学报, 2014, 23(6):233-241. 浏览
[24]  ||

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133