全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

尕海湿地CH4、CO2和N2O通量特征初步研究

DOI: 10.11686/cyxb2014350, PP. 1-10

Keywords: 尕海湿地,CH4通量,CO2通量,N2O通量

Full-Text   Cite this paper   Add to My Lib

Abstract:

2011年7月-2012年7月,采用静态箱-气相色谱法同步研究了尕海4种典型湿地类型的CH4、CO2和N2O通量及其与温度因子的关系,并估算了其全球变暖潜势值(GWP)。结果表明,尕海湿地的CH4、CO2和N2O通量具有明显的空间变化特征,CH4、CO2和N2O通量最小值分别为亚高山草甸(-0.014±0.126)mg/(m2·h),沼泽湿地(137.17±284.51)mg/(m2·h)和高山湿地(-0.008±0.022)mg/(m2·h),而最大值分别为沼泽湿地(0.498±0.682)mg/(m2·h),高山湿地(497.81±473.09)mg/(m2·h)和草本泥炭地(0.094±0.117)mg/(m2·h);同时CH4、CO2通量有明显的时间变化特征,通量最大值分别出现在2011年的7-10月和2012年的5-7月,而后降低并维持相对稳定的变化趋势;5cm地温、气温、地表温度及箱内温度与4种类型湿地CO2通量呈极显著正相关关系(P<0.01),与高山湿地CH4通量均存在显著正相关关系(P<0.05),与其他3种湿地类型CH4通量的相关性均较差,但与4种湿地类型N2O通量无显著相关性;尕海草本泥炭地、沼泽湿地、高山湿地和亚高山草甸4种类型湿地的温室效应贡献潜力依次为35.311,13.520,34.816和30.236tCO2/(hm2·a),沼泽湿地能够显著降低温室效应。

References

[1]  Didon U M E. Variation between barley cultivars in early response to weed competition. Journal of Agronomy and Crop Science, 2002, 18: 176-184.
[2]  Chen W, Xue L. Root interactions: competition and facilitation. Acta Ecologica Sinica, 2004, 24(6):1243-1251.
[3]  Wang L X, Li J. Science of Farm System[M]. Beijing: Science Press, 2003: 278-279.
[4]  Dong Y, Zhang S, Qi Y. Fluxes of CO 2 , N 2 O and CH 4 from typical temperate grassland in Inner Mongolia and its daily variation. Chinese Science Bulletin, 2000, 45(17): 1590-1594.
[5]  Didon U M E, Boström U. Growth and development of six barley ( Hordeum vulgare ssp. vulgare L.) cultivars in response to a model weed ( Sinapis alba L.). Journal of Agronomy and Crop Science, 2003, 189: 409-417.
[6]  Kwon S L, Smith R J, Talbert R E. Interference and duration of red rice ( Oryza sativa L.) in rice ( Oryza sativa ). Weed Science, 1991, 39: 363-368.
[7]  Song D M, Ma D R, Yang Q, et al . Effects of weedy rice on yield and quality and micro-ecological environment in cultivated Japonica rice population. Acta Agronomica Sinica, 2009, 35(5): 914-920.
[8]  Kammann C. Methane flux from differentially managed grassland study plots: the important role of CH 4 oxidation in grassland with a high potential for CH 4 production. Environmental Pollution, 2001, 115: 261-273.
[9]  Murphy K M, Dawson J C, Jones S S. Relationship among phenotypic growth traits, yield and weed suppression in spring wheat landraces and modern cultivars. Field Crops Research, 2008, 105: 107-115.
[10]  Duke S O. Allelopathy: current status of research and future of the discipline: a commentary. Allelopathy Journal, 2010, 25: 17-30.
[11]  Huang G B, Chai Q. Acting formations and applying development of allelopathy. Chinese Journal of Eco-Agriculture, 2003, 11(3): 172-174.
[12]  Joabsson A, Chistensen T R. Methane emissions from wetlands and their relationship with vascular plants: an Arctic example. Global Change Biology, 2001, 7: 919-932.
[13]  Chen W, Xue L. Root interactions: competition and facilitation. Acta Ecologica Sinica, 2004, 24(6):1243-1251.
[14]  Inderjit. Experimental complexities in evaluating the allelopathic activities in laboratory bioassays: A case study. Soil Biology & Biochemistry, 2006, 38: 256-262.
[15]  Zhang F W, Liu A H, Li Y N, et al . CO 2 flux in alpine wetland ecosystem on the Qingha-Tibetan Plateau. Acta Ecologica Sinica, 2008, (2): 453-462.
[16]  Kwon S L, Smith R J, Talbert R E. Interference and duration of red rice ( Oryza sativa L.) in rice ( Oryza sativa ). Weed Science, 1991, 39: 363-368.
[17]  Ma Y Q, Liu D L, Lovett J V. Weed allelopathy and its utilization in biological control of weeds. Chinese Journal of Ecology, 1991, 10(5): 46-49.
[18]  Danevcic T, Mandic-Mulec I, Stres B, et al . Emissions of CO 2 , CH 4 and N 2 O from Southern uropean peatlands. Soil Biology and Biochemistry, 2010, 42: 1437-1446.
[19]  Duke S O. Allelopathy: current status of research and future of the discipline: a commentary. Allelopathy Journal, 2010, 25: 17-30.
[20]  Dilday R H, Mattice J D, Moldenhauer K A. Rice Allelopathy[M]. Taegu, Korea: Kyungpook National University Press, 2000: 15-26.
[21]  Ojanen P, Minkkinen K R, Almb J K, et al . Soil-atmosphere CO 2 , CH 4 and N 2 O fluxes in boreal forestry-drained peatlands. Forest Ecology and Management, 2010, 260: 411-421.
[22]  Inderjit. Experimental complexities in evaluating the allelopathic activities in laboratory bioassays: A case study. Soil Biology & Biochemistry, 2006, 38: 256-262.
[23]  Tu H L. Development in research and controlling of weeds in the fields of China. Pesticide, 2001, 40(3): 1-3.
[24]  Hu F, Kong C H, Xu X H, et al . Weed-suppressing effect and its mechanism of allelopathic rice accessions. Scientia Agricultura Sinica, 2004, 37(8): 1160-1165.
[25]  Salm J R, Maddison M, Tammik S, et al . Emissions of CO 2 , CH 4 and N 2 O from undisturbed, drained and mined peatlands in Estonia. Hydrobiologia, 2012, 692: 41-55.
[26]  Ma Y Q, Liu D L, Lovett J V. Weed allelopathy and its utilization in biological control of weeds. Chinese Journal of Ecology, 1991, 10(5): 46-49.
[27]  Zhang C X, Hu X E, Qian Y X. Trend of herbicide use in developed countries and current research and future directions in weed science research in China. Acta Phytophylacica Sinica, 1997, 24(3): 278-282.
[28]  Wu C X, Liu S J, Zhao G Q. Isolation and identification of the potential allelochemicals in the aqueous extract of yellow sweet clover ( Melilotus officinalis ). Acta Prataculturae Sinica, 2014, 23(5): 184-192.
[29]  Dilday R H, Mattice J D, Moldenhauer K A. Rice Allelopathy[M]. Taegu, Korea: Kyungpook National University Press, 2000: 15-26.
[30]  Zhang Z P. Advances in cropland weed management in China. Plant Protection, 2004, 30(2): 28-33.
[31]  Klemedtsson L, Von-Arnold K, Weslien P, et al . Soil C, N ratio as a scalar parameter to predict nitrous oxide emissions. Global Change Biology, 2005, 11: 1142-1147.
[32]  Liu C, Chen X D, Wu M, et al . Allelopathic effects of Phragmites communis leaves on the growth and physiobiochemical characteristics of Solidago canadensis . Acta Prataculturae Sinica, 2014, 23(3): 182-190.
[33]  Hu F, Kong C H, Xu X H, et al . Weed-suppressing effect and its mechanism of allelopathic rice accessions. Scientia Agricultura Sinica, 2004, 37(8): 1160-1165.
[34]  Chen X, Tang J J, Zhao H M, et al . Sustainable utilization of weed diversity resources in agroecosystem. Journal of Natural Resources, 2003, 18(3): 340-346.
[35]  Hayden M J, Ross D S. Denitrification as a nitrogen removal mechanism in a Vermont peatland. Journal of Environment Quality, 2005, 34: 2052-2061.
[36]  Baziramakenga R, Leroux G D, Simard R R. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. Journal of Chemical Ecology, 1995, 21: 1271-1285.
[37]  Wu C X, Liu S J, Zhao G Q. Isolation and identification of the potential allelochemicals in the aqueous extract of yellow sweet clover ( Melilotus officinalis ). Acta Prataculturae Sinica, 2014, 23(5): 184-192.
[38]  Guo Y Y. Illustrations with real examples of using ecological regulation strategies against crop pests in China. Plant Protection, 2006, (2): 1-4.
[39]  Li X D, Shen X K, Zhang C P, et al . Factors influencing soil respiration in a pea field in the Loess Plateau. Acta Prataculturae Sinica, 2014, 23(5): 24-30.
[40]  Lin W X, He H Q, Guo Y C, et al . Rice allelopathy and its physiobiochemical characteristics. Chinese Journal of Applied Ecology, 2001, 12(6): 871-875.
[41]  Liu C, Chen X D, Wu M, et al . Allelopathic effects of Phragmites communis leaves on the growth and physiobiochemical characteristics of Solidago canadensis . Acta Prataculturae Sinica, 2014, 23(3): 182-190.
[42]  Wu L F, Chen B, Ouyang Z. Evolution and advances of cropping system. Tillage and Cultivation, 2002, (3): 1-5, 14.
[43]  Huttunen J T, Nykänen H, Turunen J, et al . Methane emissions from natural peatlands in the northern boreal zone in Finland, Fennosca-ndia. Atmospheric Environment, 2003, 37: 147-151.
[44]  Zheng J Y, Yue Z H, Tian Y, et al . Allelopathy of Equisetum arvense extract on seed germination and seedling growth of wheat. Acta Prataculturae Sinica, 2014, 23(3): 191-196.
[45]  Baziramakenga R, Leroux G D, Simard R R. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. Journal of Chemical Ecology, 1995, 21: 1271-1285.
[46]  Lemerle D, Verbeek B, Coombes N. Losses in grain yield of winter crops from Lolium rigidum competition depend on crop species, cultivar and season. Weed Research, 1995, 35(6): 503-509.
[47]  Li Y R. The biochemical interaction of plant. Soils, 1993, 25(5): 248-251.
[48]  Freeman C, Nevison G B, Kang H. Contrasted effects of simulated drought on the production and oxidation of methane in a mid Wales wetland. Soil Biology and Biochemistry, 2002, 34: 61-67.
[49]  Lin W X, He H Q, Guo Y C, et al . Rice allelopathy and its physiobiochemical characteristics. Chinese Journal of Applied Ecology, 2001, 12(6): 871-875.
[50]  Mohler C L. Ecological Management of Agricultural Weeds[M]. UK, Cambridge: Cambridge University Press, 2001: 444-493.
[51]  Liebman M, Davis A S. Integration of soil, crop and weed management in low-external-input farming systems. Weed Research, 2000, 40(1): 27-48.
[52]  Liikanen A, Huttunen J T, Karjalainen S M, et al . Temporal and seasonal changes in greenhouse gas emissions from a constructed wetland purifying peat mining runoff waters. Ecological Engineering, 2006, 26: 241-251.
[53]  Zheng J Y, Yue Z H, Tian Y, et al . Allelopathy of Equisetum arvense extract on seed germination and seedling growth of wheat. Acta Prataculturae Sinica, 2014, 23(3): 191-196.
[54]  Tang H Y. Study on distribution of farmland weed species. Shanghai Agricultural Science and Technology, 1983, (5): 28-30.
[55]  Albrecht H, Auerswald K. Arable weed seedbanks and their relation to soil properties. Aspects of Applied Biology, 2003, 69: 11-20.
[56]  Koh H S, Ochs C A, Yu K. Hydrologic gradient and vegetation controls on CH 4 and CO 2 fluxes in a spring-fed forested wetland. Hydrobiologia, 2009, 630: 271-286.
[57]  Li Y R. The biochemical interaction of plant. Soils, 1993, 25(5): 248-251.
[58]  Zhang J L, Mu X Q, Li X L, et al . Preliminary study on the allelopathy of associated weeds with wheat. Chinese Agricultural Science Bulletin, 2006, 22(7): 458-461.
[59]  Dieleman J A, Mortensen D A, Buhler D D, et al . Identifying associations among site properties and weed species abundance. I. Multivariate analysis. Weed Science, 2000, 48: 567-575.
[60]  Hirota M, Senga Y, Seike Y, et al . Fluxes of carbon dioxide, methane and nitrous oxide in two contrastive fringing zones of coastal lagoon, Lake Nakaumi, Japan. Chemosphere, 2007, 68(3): 597-603.
[61]  Mohler C L. Ecological Management of Agricultural Weeds[M]. UK, Cambridge: Cambridge University Press, 2001: 444-493.
[62]  Zhou B. Effect of extract from three clonal companion weeds on rice seed germination and seedling growth. Acta Agriculturae Boreali-occidentalis Sinica, 2012, 20(8): 71-76.
[63]  Sun Z G, Liu J S, Yang J S, et al . Nitrification denih-ification and N 2 O emission of typical Calamagrostis angustifolia wetland soils in San jiang Plain. Chinese Journal of Applied Ecology, 2007, 18(1): 185-192.
[64]  Zhang J, Hamill A S, Gardiner I O, et al . Dependence of weed flora on the active soil seedbank. Weed Research, 1998, 38: 143-152.
[65]  Albrecht H, Auerswald K. Arable weed seedbanks and their relation to soil properties. Aspects of Applied Biology, 2003, 69: 11-20.
[66]  Tominaga T, Yamasue Y. Crop-associated Weeds[M]. Berlin: Springer Netherlands, 2004: 47-63.
[67]  Dowrick D J, Hughes S, Freeman C, et al . Nitrous oxide emissions from a gully mire in mid Wales, U K, under simulated summer drought. Biogeochemistry, 1999, 44: 151-162.
[68]  Ball D A, Miller S D. A comparison of techniques for estimation of arable soil seedbanks and their relationship to weed flora. Weed Research, 1989, 29: 365-373.
[69]  Dieleman J A, Mortensen D A, Buhler D D, et al . Identifying associations among site properties and weed species abundance. I. Multivariate analysis. Weed Science, 2000, 48: 567-575.
[70]  Yang B J, Huang G Q, Xu N, et al . Effects of different multiple cropping systems on paddy field weed community under long term paddy- upland rotation. Chinese Journal of Applied Ecology, 2013, 24(9): 2533-2538.
[71]  Sun Z G, Liu J S, Yang J S, et al . N 2 O flux characteristics and emission contributions of Calamagrostis angustifolia wetland during growth and non-growth seasons. Acta Prataculturae Sinica, 2009, 18(6): 242-247.
[72]  Wei S H, Qiang S, Ma B, et al . Soil weed seedbank and integrated weed management. Soils, 2005, 37(2): 121-128.
[73]  Zhang J, Hamill A S, Gardiner I O, et al . Dependence of weed flora on the active soil seedbank. Weed Research, 1998, 38: 143-152.
[74]  Shen X N, Liu X H. Multiple Cropping[M]. Beijing: China Agriculture Press, 1983: 2-3.
[75]  Wang K J, Qiang S. Quantitative analysis of weed community in wheat field in northern areas of Jiangsu Province. Jiangsu Journal of Agricultural Sciences, 2002, 18: 147-153.
[76]  Wang L L, Sun Z G, Mou X J, et al . A preliminary study on carbon dioxide, methane and nitrous oxide fluxes from intertidal flat wetlands of the Yellow River estuary. Acta Prataculturae Sinica, 2011, 20(3): 51-61.
[77]  Ball D A, Miller S D. A comparison of techniques for estimation of arable soil seedbanks and their relationship to weed flora. Weed Research, 1989, 29: 365-373.
[78]  Liebman M, Dyck E. Crop rotation and intercropping strategies for weed management. Ecological Applications, 1993, 3: 92-122.
[79]  Feldman S R, Torres C A, Lewis P. The effect of different tillage systems on the composition of the seedbank. Weed Research, 1997, 37: 71-76.
[80]  Yang S H, Chen G X, Lin J H, et al . N 2 O emission from woody plants and its relation to their physiological activities. Chinese Journal of Applied Ecology, 1995, 6(4): 337-340.
[81]  王明星, 张仁健, 郑循华. 温室气体的源与汇. 气候与环境研究, 2000, 5(1): 75-79.
[82]  王建林, 钟志明, 王忠红, 等. 青藏高原高寒草原生态系统土壤碳磷比的分布特征. 草业学报, 2014, 23(2):9-19.
[83]  赵萍,代万安,杜明新,等. 青藏高原种植紫穗槐对土壤养分的响应. 草业学报, 2014, 23(3): 175-181. 浏览
[84]  魏文彬, 李婷, 李俊臻. 尕海湿地生态系统的保护与管理. 湿地科学与管理, 2010, 6(3): 32-34.
[85]  张法伟, 刘安花, 李英年, 等. 青藏高原高寒湿地生态系统CO 2 通量. 生态学报, 2008, (2): 453-462.
[86]  李旭东,沈晓坤,张春平, 等. 黄土高原农田土壤呼吸特征及其影响因素. 草业学报, 2014, 23(5): 24-30. 浏览
[87]  Wei S H, Qiang S, Ma B, et al . Soil weed seedbank and integrated weed management. Soils, 2005, 37(2): 121-128.
[88]  孙志高,刘景双, 杨继松,等. 三江平原典型小叶章湿地土壤硝化-反硝化作用与氧化亚氮排放. 应用生态学报, 2007, 18(1): 185-192.
[89]  孙志高, 刘景双, 杨继松,等. 生长季与非生长季小叶章湿地N 2 O通量特征及排放贡献.草业学报, 2009, 18(6): 242-247. 浏览
[90]  Qiang S, Shen J M, Zhang C Q, et al . The influence of cropping systems on weed communities in the cotton fields of Jiangsu province. Acta Phytoecoiogica Sinica, 2003, 27(2): 278-282.
[91]  王玲玲, 孙志高, 牟晓杰,等. 黄河口滨岸潮滩湿地 CO 2 、CH 4 和 N 2 O通量特征初步研究.草业学报, 2011, 20(3): 51-61.
[92]  杨思河, 陈冠雄, 林继慧,等. 几种木本植物的N 2 O释放与某些生理活动的关系. 应用生态学报, 1995, 6(4): 337-340.
[93]  Niu Y Z, Li F B, Liu J G, et al . The effects of straw returning and different tillage on weed seed bank under rice-wheat rotation system. Jiangsu Agricultural Sciences, 2008, (1): 79-81.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133