Whiting G J, Chanton J P. Greenhouse carbon balance of wetlands: methane emission versus carbon equestration. Tellus, 2001, B53: 521-528.
[2]
Gu Q Z, Yang X Y, Sun B H, et al . Weed biodiversity in winter wheat field of loess soil under different fertilization regime. Chinese Journal of Applied Ecology, 2007, 18(5): 1040-1044.
[3]
Feng W, Pan G X, Qiang S, et al . Influence of long-term fertilization on soil seed bank diversity of a paddy soil under rice/rape rotation. Biodiversity Science, 2006, 14(6): 461-469.
[4]
Vogelmann K, Subert C, Danzberger N, et al . Plasma membrane-association of SAUL1-type plant U-box armadillo repeat proteins is conserved in land plants. Frontiers in Plant Science, 2014, 5: 37.
[5]
Bridgham S D, Megonigal J P, Keller J K. The carbon balance of North American wetlands. Wetlands, 2006, 26: 889-916.
[6]
Chen C P, Cui B H, Tang L L, et al . Effects of different long-term fertilization modes on weed community and early rice yield. Chinese Journal of Ecology, 2013, 32(11): 2944-2952.
[7]
Drechsel G, Bergler J, Wippel K, et al . C-terminal armadillo repeats are essential and sufficient for association of the plant U-box armadillo E3 ubiquitin ligase SAUL1 with the plasma membrane. Journal of Experimental Botany, 2011, 62(2): 775-785.
[8]
Wan K Y, Pan J F, Li R H, et al . Influence of long-term different fertilization on soil weed seed bank diversity of a dry land under winter wheat-soybean rotation. Ecology and Environmental Sciences, 2010, 19(4): 836-842.
[9]
Brix H, Sorrell B K, Lorenzen B. Are phragmites-dominated wetlands a net source or net sink of greenhouse gases. Aquatic Botany, 2001, 69: 313-324.
[10]
Srijani D, Subramanian S, Gayathri W, et al . The S-domain receptor kinase AtARK2 and the U- box/ARM-repeat-containing E3 ubiquitin ligase 9 module mediates lateral root development under phosphate starvation in Arabidopsis . Plant Physiology, 2014, 165(4): 1647-1656.
[11]
Mbengue M, Camut S, de Carvalho-Niebel F, et al . The Medicago truncatula E3 ubiquitin ligase PUB1 interacts with the LYK3 symbiotic receptor and negatively regulates infection and nodulation. The Plant Cell, 2010, 22(10): 3474-3488. doi:10.1105/tpc.110.075861.
[12]
Whiting G J. Exchange in the Hudson-Bay lowlands-community characteristics and multispectral reflectance properties. Journal of Geophysical Research, 1994, 99: 1519-1528.
[13]
Lou Q F, Zhang D Y. Influence of nitrogen on competition between three weed species and bird rape. Journal of Nanjing Agricultural University, 2000, 23(1): 23-26.
[14]
Wand J L, Zhong Z M, Wang Z H, et al . Soil C/P distribution characteristics of alpine steppe ecosystems in the Qinhai-Tibetan Plateau. Acta Prataculturae Sinica, 2014, 23(2): 9-19.
[15]
Huel D G, Hucl P. Genotypic variation for competitive ability in spring wheat. Plant Breeding, 1996, 115: 325-329.
[16]
Andersson T N, Milberg P. Weed flora and the relative importance of site, crop, crop rotation, and nitrogen. Weed Science, 1998, 46: 30-38.
[17]
Zhao P, Dai W A, Du M X, et al . Response of Amorpha fruiticosa planting to soil nutrients in the Tibetan Plateau. Acta Prataculturae Sinica, 2014, 23(3): 175-181.
[18]
Lemerle D, Gill G S, Murphy C E, et al . Genetic improvement and agronomy for enhanced wheat competitiveness with weeds. Crop and Pasture Science, 2001, 52: 527-548.
[19]
Swanton C J, Shrestha A, Roy R C, et al . Effect of tillage systems, N, and cover crop on the composition of weed flora. Weed Science, 1999, 47: 454-461.
Zhang G C, Li J X, Chen X H. The main biological characteristics of Alternanthera philoxeroides . Weed Science, 1993, 2: 10-12.
[27]
Yin L, Cai Z, Zhong W. Changes in weed community diversity of maize crops due to long-term fertilization. Crop Protection, 2006, 25: 910-914.
[28]
Zhao Y, Jiang H Y, Wang J M, et al . Analysis of genome-wide disease resistance genes and their expansion in Medicago truncatula . Journal of Agricultural Biotechnology, 2009, 17(6): 1062-1069.
[29]
Wang M X, Zhang R J, Zheng X H. The source and sink of greenhouse gas. Climatic and Environmental Research, 2000, 5(1): 75-79.
[30]
Han Q T, Xu X S, Lu C Q, et al . Net exchanges of CO 2 , CH 4 , and N 2 O between China’s terrestrial ecosystems and the atmosphere and their contributions to global climate warming. Journal of Geophysical Research, 2011, 116: G02011, doi:10. 1029/2010 JG001393.
[31]
Gu Q Z, Yang X Y, Sun B H, et al . Weed biodiversity in winter wheat field of loess soil under different fertilization regime. Chinese Journal of Applied Ecology, 2007, 18(5): 1040-1044.
[32]
Li R H, Qiang S, Qiu D S, et al . Effects of long-term different fertilization regimes on the diversity of weed communities in oilseed rape fields under rice-oilseed rape cropping system. Biodiversity Science, 2008, 16(2): 118-125.
[33]
Donna Y, Daphne R G. The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. Journal of Experimental Botany, 2009, 60(4): 1109-1121.
[34]
Chen C P, Cui B H, Tang L L, et al . Effects of different long-term fertilization modes on weed community and early rice yield. Chinese Journal of Ecology, 2013, 32(11): 2944-2952.
[35]
Aselmann I, Crutzen P J. Global distribution of natural freshwater wetlands and rice paddies, their net primary production, seasonality and possible methane emissions. Journal of Atmospheric Chemistry, 1989, 8: 307-358.
[36]
Yin L, Cai Z, Zhong W. Changes in weed community diversity of maize crops due to long-term fertilization. Crop Protection, 2006, 25: 910-914.
[37]
Yang J, Lan X G, Li Y H. U-box/ARM proteins in plants. Plant Physiology Communications, 2008, 44(6): 1216-1222.
[38]
Jiang M, Shen M X, Shen X P, et al . Effect of long-term fertilization pattern on weed community diversity in wheat field. Acta Ecologica Sinica, 2014, 34(7): 1746-1756.
[39]
Feng W, Pan G X, Qiang S, et al . Influence of long-term fertilization on soil seed bank diversity of a paddy soil under rice/rape rotation. Biodiversity Science, 2006, 14(6): 461-469.
[40]
Bubier J L, Moore T R. An ecological perspective on methane emission from northern wetlands. Trends in Ecology and Evolution, 1994, 9: 460-464.
[41]
Yashwanti M, Shiu S H, Sophia L S, et al . A large complement of the predicted Arabidopsis ARM repeat protein are members of the U-box E3 ubiquitin ligase family. Plant Physiology, 2004, 134(1): 59-66.
[42]
Zhu W D, Wei F X. Effect of fertilizer application on the occurrence and damage of weed in wheat field. Acta Phytophylacica Sinica, 1998, 25(4): 364-368.
[43]
Bubier J L, Bhatia G, Moore T R, et al . Spatial and temporal variability in growing-season net ecosystem carbon dioxide exchange at a large peatland in Ontario, Canada. Ecosystem, 2003, 6: 353-367.
[44]
Jakob W, Charlotte O S, Karen S. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligase. Biochemical Journal, 2008, 413: 447-457.
[45]
Wan K Y, Pan J F, Li R H, et al . Influence of long-term different fertilization on soil weed seed bank diversity of a dry land under winter wheat-soybean rotation. Ecology and Environmental Sciences, 2010, 19(4): 836-842.
[46]
Lou Q F, Zhang D Y. Influence of nitrogen on competition between three weed species and bird rape. Journal of Nanjing Agricultural University, 2000, 23(1): 23-26.
[47]
Alm J, Schulman J, Walden H, et al . Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology, 1999, 80: 161-174.
[48]
Seo D H, Ryu M Y, Jammes F, et al . Roles of four Arabidopsis U-Box E3 ubiquitin ligases in negative regulation of abscisic acid-mediated drought stress responses. Plant Physiology, 2012, 160(1): 556-568.
[49]
Jiang M, Shen M X, Shen X P, et al . Effect of long-term fertilization pattern on weed community diversity in wheat field. Acta Ecologica Sinica, 2014, 34(7): 1746-1756.
[50]
Andersson T N, Milberg P. Weed flora and the relative importance of site, crop, crop rotation, and nitrogen. Weed Science, 1998, 46: 30-38.
[51]
Alm J, Talanov A, Saamio S, et al . Reconstruction the carbon balance for microsites in a boreal oligotrophic pine fen, Finland. Oecologia, 1997, 110: 423-431.
[52]
Zhu W D, Wei F X. Effect of fertilizer application on the occurrence and damage of weed in wheat field. Acta Phytophylacica Sinica, 1998, 25(4): 364-368.
[53]
Swanton C J, Shrestha A, Roy R C, et al . Effect of tillage systems, N, and cover crop on the composition of weed flora. Weed Science, 1999, 47: 454-461.
[54]
Chen H, Li L Y, Bai H, et al . Expression analysis of rice U-Box proteins at different developmental stages. Progress in Biochemistry and Biophysics, 2009, 36(9): 1208-1214.
[55]
Wei W B, Li T, Li J Z. Gahai wetland ecosystem conservation and managment. Wetland Science and Management, 2010, 6(3): 32-34.
[56]
Christensen S. Weed suppression ability of spring barley varieties. Weed Research, 1995, 35: 241-247.
[57]
Huel D G, Hucl P. Genotypic variation for competitive ability in spring wheat. Plant Breeding, 1996, 115: 325-329.
Juutinen S, Alm J, Martikainen P, et al . Effects of spring flood and water level draw-down on methane dynamics in the littoral zone of boreal lakes. Freshw Biology, 2001, 46: 855-869.
Lemerle D, Gill G S, Murphy C E, et al . Genetic improvement and agronomy for enhanced wheat competitiveness with weeds. Crop and Pasture Science, 2001, 52: 527-548.
[66]
Kaki T, Ojala A, Kankaala P. Diel variation in methane emissions from stands of Phragmites australis (Cav.) Trin. ex Steud. and Typha latifolia L. in a boreal lake. Aquat Bottany, 2001, 71(4): 259-271.
[67]
Pester T A, Burnside O C, Orf J H. Increasing crop competitiveness to weeds through crop breeding. Journal of Crop Production, 1999, 2: 31-58.
[68]
Christensen S. Weed suppression ability of spring barley varieties. Weed Research, 1995, 35: 241-247.
[69]
Mason H E, Navabi A, Frick B L, et al . The weed-competitive ability of Canada western red spring wheat cultivars grown under organic management. Crop Science, 2007, 47: 1167-1176.
[70]
Hirota M Y, Tang Y, Hu Q, et al . Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland. Soil Biology and Bio-chemistry, 2004, 36: 737-748.
[71]
Chen H, Yao S, Wu N, et al . Determinants influencing seasonal variations of methane emissions from alpine wetlands in Zoige Plateau and their implications. Journal of Geophysical Research: Atmospheres, 2008, 113:D12303, doi:10.1029/2006JD008072.
[72]
Seavers G P, Wright K J. Crop canopy development and structure influence weed suppression. Weed Research, 1999, 39: 319-328.
[73]
Didon U M E. Variation between barley cultivars in early response to weed competition. Journal of Agronomy and Crop Science, 2002, 18: 176-184.
[74]
Mosier A R. Impact of agriculture on soil consumption of atmospheric CH 4 and a comparison of CH 4 and N 2 O flux in subarctic, temperate and tropical grasslands. Nutrient Cycling in Agro-ecosystems, 1997, 49(1-3): 71-83.