全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

石羊河中下游不同退耕年限次生草地土壤理化及生物学特性研究

DOI: 10.11686/cyxb2014395, PP. 24-34

Keywords: 石羊河中下游,退耕年限,理化特性,土壤微生物

Full-Text   Cite this paper   Add to My Lib

Abstract:

测定并分析了石羊河中下游不同退耕年限次生草地土壤理化(含水量、有机碳、硝态氮、铵态氮、全磷、有效磷、全钾、速效钾、缓效钾)及生物学(微生物量碳、氮、磷及真菌、细菌、放线菌数量)特性。结果表明,随退耕年限的延长,各土层(0~10cm,10~20cm,20~30cm,30~40cm)土壤铵态氮及全磷呈下降趋势;土壤含水量、有机碳、硝态氮、有效磷、有效钾及缓效钾呈上升趋势;全钾与速效钾随退耕年限的变化不显著;除30~40cm土层外,各土层土壤微生物量碳在退耕较短年限内(从1a到5a)呈下降的趋势,在退耕较长年限内(从8a到31a)呈上升趋势;土壤微生物量氮呈先上升(从1a到4a)再下降(从4a到8a)最后趋于稳定(从8a到31a)的趋势;除0~10cm土层外,各土层土壤微生物量磷呈先下降(从1a到2a)再上升(从2a到8a)最后下降(从8a到31a)的趋势;不同年限退耕地土壤三大类微生物数量均表现为细菌>放线菌>真菌。

References

[1]  杨树晶, 李涛, 干友民, 等. 阿坝牧区草地不同利用方式与程度对植被碳含量的影响. 草业学报, 2014, 23(3): 325-332. 浏览
[2]  王杰, 李刚, 修伟明, 等. 贝加尔针茅草原土壤微生物功能多样性对氮素和水分添加的响应. 草业学报, 2014, 23(4): 343-350. 浏览
[3]  张玉霞, 姚拓, 王国基, 等. 高寒生态脆弱区不同扰动生境草地植被及土壤无机氮变化特征. 草业学报, 2014, 23(4): 245-252. 浏览
[4]  田霄鸿, 李生秀. 几种蔬菜对硝态氮、铵态氮的相对吸收能力. 植物营养与肥料学报, 2000, 6(2): 194-201.
[5]  牛赟, 刘贤德, 赵维俊, 等. 祁连山青海云杉( Picea crassifolia )林浅层土壤碳、氮含量特征及其相互关系. 中国沙漠, 2014, 34(2): 371-377.
[6]  魏强, 凌雷, 柴春山, 等. 甘肃兴隆山森林演替过程中的土壤理化性质. 生态学报, 2012, 32(15): 4700-4713.
[7]  ||
[8]  Feng S W. The evolution of drainage system of the Minqin oasis. Journal of Geographical Sciences, 1963, 29(3): 241-249.
[9]  Wang L D, Yao T, He F L, et al . Natural vegetable restoration and change of soil enzyme activity on secondary grassland of abandoned land area in the downstream of Shiyang River. Acta Prataculturae Sinica, 2014, 23(4): 253-261.
[10]  Jenny H. The Soil Resource[M]. New York: Springer-Verlag, 1980: 23-26.
[11]  Liu X J. Nutrient research on the activity of enzyme and soil nutrient in the different types of farmland. Chinese Journal of Soil Science, 2004, 35(4): 523-525.
[12]  Zak J C, Willing M R, Moorhead D L, et al . Functional diversity of microbial communities:a quantitative approach. Soil Biology and Biochemistry, 1994, 26(9): 1101-1108.
[13]  Fu Y, Zhuang L, Wang Z K, et al . On the physical chemical and soil microbial properties of soils in the habitat of wild Ferula in Xinjiang. Acta Ecologica Sinica, 2012, 32(10): 3279-3287.
[14]  Zhao H L, Zhou R L, Zhao X Y, et al . Desertification mechanisms and process of soil chemical and physical properties in Hulunbeir sandy grassland, Inner Mongolia. Acta Prataculturae Sinica, 2012, 21(2): 1-7.
[15]  Li X D, Wei L, Zhang Y C, et al . Effects of land use regimes on soil physical and chemical properties in the Longzhong part of Loess plateau. Acta Prataculturae Sinica, 2009, 18(4): 103-110.
[16]  Bao S D. Agrochemical Soil Analysis[M]. Beijing: China Agriculture Press, 2005: 23-107.
[17]  Sparling G P. Soil microbial biomass, activity and nutrient cycling as indicators of soil heath[A]. In: Pankhurst C, Doube B M, Gupta V V S R. Biological Indicators of Soil Heath[M]. Wallingford, UK, New York: CAB International, 1997.
[18]  Yao H Y, Huang C Y. Soil Microbial Ecology and Experimental Techniques[M]. Beijing: Science Press, 2006.
[19]  Xu G H, Zheng H Y. Soil Microbial Analysis Methods Manual[M]. Beijing: Agriculture Press, 1986.
[20]  Chinese Academy of Sciences Institute of Soil Microbes Room. Soil Microbial Research Method[M]. Beijing: Science Press, 1985.
[21]  Yang S J, Li T, Gan Y M, et al . Impact of different use patterns and degrees of grassland use on vegetation carbon storage in the Aba grassland pastoral area. Acta Prataculturae Sinica, 2014, 23(3): 325-332.
[22]  Wang J, Li G, Xiu W M, et al . Responses of soil microbial functional diversity to nitrogen and water input in Stipa baicalensiss steppe, Inner Mongolia, Northern China. Acta Prataculturae Sinica, 2014, 23(4): 343-350.
[23]  Zhang Y X, Yao T, Wang G J, et al . Characteristics of vegetation and soil inorganic nitrogen concentrations under different disturbed habitats in a weak alpine ecosystem. Acta Prataculturae Sinica, 2014, 23(4): 245-252.
[24]  Tian X H, Li S X. Uptake capacity of several vegetable crops to nitrate and ammonium. Journal of Plant Nutrition and Fertilizer, 2000, 6(2): 194-201.
[25]  Merou T P, Papanastasis V P. Factors affecting the establishment and growth of annual legumes in semi-arid mediterranean grasslands. Plant Ecology, 2009, 201: 491-500.
[26]  Niu Y, Liu X D, Zhao W J, et al . Characteristics and interrelation of shallow soil organic and total nitrogen of Picea crassifolia forest in the Qilian Mountain, Gansu, China. Journal of Desert Research, 2014, 34(2): 371-377.
[27]  Wei Q, Ling L, Chai C S, et al . Soil physical and chemical properties in forest succession process in Xinglong Mountain of Gansu. Acta Ecologica Sinica, 2012, 32(15): 4700-4713.
[28]  Zeng D H, Hu Y L, Chang S X, et al . Land cover change effects on soil chemical and biological properties after planting Mongolian pine ( Pinus sylvestris var. mongolica ) in sandy lands in Keerqin northeastern China. Plant and Soil, 2009, 317: 121-133.
[29]  Jenkinson D S. The determination of microbial biomass carbon and nitrogen in soils[A]. In: Wilson J R. Advances in Nitrogen Cycling in Agricultural Ecosystems[M]. C.A.B.International, Wallingford, 1988: 368-386.
[30]  Dalmonech D, Lagomarsino A, Moscatelli M C, et al . Microbial performance under increasing nitrogen availability in a Medi-terranean forest soil. Soil Biology and Biochemistry, 2010, 42: 1596-1606.
[31]  冯绳武. 民勤绿洲的水系演变. 地理学报, 1963, 29(3): 241-249.
[32]  王理德, 姚拓, 何芳兰, 等. 石羊河下游退耕区次生草地自然恢复过程及土壤酶活性的变化. 草业学报, 2014, 23(4): 253-261. 浏览
[33]  刘新建. 不同农田土壤酶活性与土壤养分相关关系研究. 土壤通报, 2004, 35(4): 523-525.
[34]  付勇, 庄丽, 王仲科, 等. 新疆野生多伞阿魏生境土壤理化性质和微生物. 生态学报, 2012, 32(10): 3279-3287.
[35]  赵哈林, 周瑞莲, 赵学勇, 等. 呼伦贝尔沙质草地土壤理化特性的沙漠化演变规律及机制. 草业学报, 2012, 21(2): 1-7.
[36]  李晓东, 魏龙, 张永超, 等. 土地利用方式对陇中黄土高原土壤理化性状的影响. 草业学报, 2009, 18(4): 103-110. 浏览
[37]  鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2005: 23-107.
[38]  姚槐应, 黄昌勇. 土壤微生物生态学及其实验技术[M]. 北京: 科学出版社, 2006.
[39]  许光辉, 郑洪元. 土壤微生物分析方法手册[M]. 北京:农业出版社, 1986.
[40]  中国科学院南京土壤研究所微生物室. 土壤微生物研究法[M]. 北京: 科学出版社, 1985.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133