全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

植物ABCG转运蛋白研究进展

DOI: 10.11686/cyxb2014415, PP. 180-188

Keywords: ABCG转运蛋白,基因结构,功能

Full-Text   Cite this paper   Add to My Lib

Abstract:

ABCG转运蛋白是ABC蛋白家族最庞大的亚族,广泛存在于植物体内。ABCG亚族主要由半分子转运蛋白WBC(white-browncomplex)和全分子转运蛋白PDR(pleiotropicdrugresistance)组成,其底物类型广泛,包括抗生素、植物激素、木质素单体、脂质及次生代谢产物等,涉及植物生命周期中的多种代谢活动。本文综述了植物ABCG转运蛋白的分子特性、结构及功能方面的研究进展,并对今后有关该蛋白的主要研究方向做了展望。

References

[1]  Verrier P J, Bird D, Burla B, et al . Plant ABC proteins a unified nomenclature and updated inventory. Trends in Plant Science, 2008, 13: 151-159.
[2]  Bairoch A. Prosite: a dictionary of sites and patterns in proteins. Nucleic Acids Research, 1992, 20: 2013-2018.
[3]  Ewart G D, Cannell D, Cox G B, et al . Mutational analysis of the traffic ATPase (ABC) transporters involved in uptake of eye pigment precursors in Drosophila melanogaster , implications for structure-function relationships. Journal of Biological Chemistry, 1994, 269: 10370-10377.
[4]  Tarr P T, Tarling E J, Bojanic D D, et al . Emerging new paradigms for ABCG transporters. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, 2009, 1791: 584-593.
[5]  McFarlane H E, Shin J J, Bird D A, et al . Arabidopsis ABCG transporters, which are required for export of diverse cuticular lipids, dimerize in different combinations. The Plant Cell, 2010, 22: 3066-3075.
[6]  Jasinski M, Ducos E, Martinoia E, et al . The ATP-Binding cassette transporters: structure, function, and gene family comparison between rice and Arabidopsis . Plant Physiology, 2003, 131: 1169-1177.
[7]  Çaklr B, Klllçkaya O. Whole-Genome survey of the putative ATP-binding cassette transporter family genes in Vitis vinifera . PLOS One, 2013, 8: e78860.
[8]  Sugiyama A, Shitan N, Sato S, et al . Genome-wide analysis of ATP-binding cassette (ABC) proteins in a model legume plant, Lotus japonicus : comparison with Arabidopsis ABC protein family. DNA Research, 2006, 13: 205-228.
[9]  Jasinski M, Banasiak J, Radom M, et al . Full-size ABC transporters from the ABCG subfamily in Medicago truncatula . Molecular Plant Microbe Interaction, 2009, 22: 921-931.
[10]  Neyfakh A A. Mystery of multidrug transporters: the answer can be simple. Molecular Microbiology, 2002, 44: 1123-1130.
[11]  Mentewab A, Stewart C N. Overexpression of an Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants. Nature Biotechnology, 2005, 23: 1177-1180.
[12]  Kang B G, Ye X, Osburn L D, et al . Transgenic hybrid aspen overexpressing the AtWBC 19 gene encoding an ATP-binding cassette transporter confers resistance to four amino glycoside antibiotics. Plant Cell Reports, 2010, 29: 643-650.
[13]  Chen W, Zhang M M, Song Y Y, et al . Impacts of heavy metals on the fluorescence characteristics and root morphology of 2 turfgrass species. Acta Prataculturae Sinica, 2014, 23(3): 333-342.
[14]  Li X, Wu Y J, Sun L X. Growth and physiological responses of three warm-season turfgrasses to lead stress. Acta Prataculturae Sinica, 2014, 23(4): 171-180.
[15]  Gao H N, Ma G T, Li C X, et al . Effects of a microorganism on grass seedling physiological and biochemical characteristics when grown in Cr(VI) polluted soil. Acta Prataculturae Sinica, 2014, 23(4): 189-194.
[16]  Pourrut B, Shahid M, Dumat C, et al . Lead uptake, toxicity, and detoxification in plants. Reviews of Environmental Contamination and Toxicology, 2011, 213: 113-136.
[17]  Lee M, Lee K, Lee J, et al . AtPDR12 contributes to lead resistance in Arabidopsis . Plant Physiology, 2005, 138: 827-836.
[18]  Kim D Y, Bovet L, Maeshima M, et al . The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. The Plant Journal, 2007, 50: 207-218.
[19]  Kim D Y, Jin J Y, Alejandrob S, et al . Overexpression of AtABCG36 improves drought and salt stress resistance in Arabidopsis . Physiologia Plantarum, 2010, 139: 170-180.
[20]  Multani D S, Briggs S P, Chamberlin M A, et al . Loss of an MDR transporter in compact stalks of maize br 2 and sorghum dw 3 mutants. Science, 2003, 302: 81-84.
[21]  Geisler M, Murphy A S. The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Letters, 2006, 580: 1094-1102.
[22]  Ito H, Gray W M. A gain-of-function mutation in the Arabidopsis pleiotropic drug resistance transporter PDR9 confers resistance to auxinic herbicides. Plant Physiology, 2006, 142: 63-74.
[23]  Strader L C, Monroe-Augustus M, Rogers K C, et al . Arabidopsis iba response 5 ( ibr 5) suppressors separate responses to various hormones. Genetics, 2008, 180: 2019-2031.
[24]  Zhang K W, Novak O, Wei Z Y, et al . Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nature Communacation, 2014, doi:10.1038/ncomms4274.
[25]  Le Hir R, Sorin C, Chakraborti D, et al . ABCG9, ABCG11 and ABCG14 ABC transporters are required for vascular development in Arabidopsis . Plant Journal, 2013, 76: 811-824.
[26]  Kanno Y, Hanada A, Chiba Y, et al . Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proceedings of the National Academy of Sciences of USA, 2012, 109: 9653-9658.
[27]  Kang J, Hwang J U, Lee M, et al . PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proceedings of the National Academy of Sciences of USA, 2010, 107: 2355-2360.
[28]  Strader L C, Bartel B. The Arabidopsis PLEIOTROPIC DRUG RESISTANCE8/ABCG36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-Butyric acid. The Plant Cell, 2009, 21: 1992-2007.
[29]  R u ˙ žiĉka K, Strader L C, Bailly A, et al . Arabidopsis PIS 1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid. Proceedings of the National Academy of Sciences of USA, 2010, 107: 10749-10753.
[30]  Ko D, Kang J, Kiba T, et al . Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proceedings of the National Academy of Sciences of USA, 2014, 111: 7150-7155.
[31]  Kuromori T, Miyaji T, Hikaru Y, et al . ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proceedings of the National Academy of Sciences of USA, 2010, 107: 2361-2366.
[32]  Umehara M, Hanada A, Yoshida S, et al . Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455: 195-200.
[33]  Gomez-Roldan V, Fermas S, Brewer P B, et al . Strigolactone inhibition of shoot branching. Nature, 2008, 455: 189-194.
[34]  Yang H X, Liu R J, Guo S X. Effects of arbuscular mycorrhizal fungus Glomus mosseae on the growth characteristics of Festuca arundinacea under salt stress conditions. Acta Prataculturae Sinica, 2014, 23(4): 195-203.
[35]  Wu Q S, Yuan F Y, Fei Y J, et al . Effects of arbuscular mycorrhizal fungi on root system architecture and sugar contents of white clover. Acta Prataculturae Sinica, 2014, 23(1): 199-204.
[36]  Kretzschmar T, Kohlen W, Sasse J, et al . A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature, 2012, 483: 341-346.
[37]  Sharda J N, Koide R T. Can hypodermal passage cell distribution limit root penetration by mycorrhizal fungi. New Phytologist, 2008, 180: 696-701.
[38]  Brewer P B, Dun E A, Ferguson B J, et al . Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis . Plant Physiology, 2009, 150: 482-493.
[39]  Crawford S, Shinohara N, Sieberer T, et al . Strigolactones enhance competition between shoot branches by dampening auxin transport. Development, 2010, 137: 2905-2913.
[40]  Hart J J, Ditomaso J M, Linscott D L, et al . Transport interactions between paraquat and polyamines in roots of intact maize seedlings. Plant Physiology, 1992, 99: 1400-1405.
[41]  Xi J, Xu P, Xiang C B. Loss of AtPDR11, a plasma membrane-localized ABC transporter, confers paraquat tolerance in Arabidopsis thaliana . The Plant Journal, 2012, 69: 782-791.
[42]  Hart J J, DiTomaso J M, Kochian L V. Characterization of paraquat transport in protoplasts from maize ( Zea mays L.) suspension cells. Plant Physiology, 1993, 103: 963-969.
[43]  Whetten R, Sederoff R. Lignin biosynthesis. Plant Cell, 1995, 7:1001-1013.
[44]  Miao Y C, Liu C J. ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes. Proceedings of the National Academy of Sciences of USA, 2010, 107: 22728-22733.
[45]  Alejandro S, Lee Y, Tohge T, et al . AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Current Biology, 2012, 22: 1207-1212.
[46]  Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany, 1997, 79: 667-677.
[47]  Bernard A, Joubès J. Arabidopsis cuticular waxes: Advances in synthesis, export and regulation. Progress in Lipid Research, 2013, 52: 110-129.
[48]  Li J J, Huang J H, Xie S C. Plant wax and its response to environmental conditions. Acta Ecologica Sinica, 2011, 31(2): 565-574.
[49]  Kunst L, Samuels A L. Biosynthesis and secretion of plant cuticular wax. Progress in Lipid Research, 2003, 42: 51-80.
[50]  Pighin J A, Zheng H, Balakshin L J, et al . Plant cuticular lipid export requires an ABC transporter. Science, 2004, 306: 702-704.
[51]  Bird D, Beisson F, Brigham A, et al . Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. The Plant Journal, 2007, 52: 485-498.
[52]  Panikashvilia D, Shi J X, Samuel B. The Arabidopsis DSO/ABCG11 transporter affects cutin metabolism in reproductive organs and suberin in roots. Molecular Plant, 2010, 3: 563-575.
[53]  Luo B, Xue X Y, Hu W L, et al . An ABC transporter gene of Arabidopsis thaliana , AtWBC 11, is involved in cuticle development and prevention of organ fusion. Plant & Cell Physiology, 2007, 48: 1790-1802.
[54]  Panikashvili D, Sigal S G, Tali M, et al . The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion. Plant Physiology, 2007, 145: 1345-1360.
[55]  Chen G X, Komatsuda T, Ma J F, et al . An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice. Proceedings of the National Academy of Sciences of USA, 2011, 108: 12354-12359.
[56]  Bessire M, Borel S, Fabre G, et al . A member of the pleiotropic drug resistance family of ATP binding cassette transporters is required for the formation of a functional cuticle in Arabidopsis . The Plant Cell, 2011, 23: 1958-1970.
[57]  Panikashvili D, Shi J X, Schreiber L, et al . The Arabidopsis ABCG13 transporter is required for flower cuticle secretion and patterning of the petal epidermis. New Phytologist, 2011, 190: 113-124.
[58]  Huang L C, Jin L, Zhang S Z, et al . Pollen release mechanisms of papilionaceous plants(Faboideae). Acta Prataculturae Sinica, 2013, 22(6): 305-314.
[59]  Quilichini T D, Friedmann M C, Samuels A L, et al . ATP-Binding cassette transporter G26 is required for male fertility and pollen exine formation in Arabidopsis . Plant Physiology, 2010, 154: 678-690.
[60]  Choi H, Jin J Y, Choi S, et al . An ABCG/WBC-type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen. The Plant Journal, 2011, 65: 181-193.
[61]  Choi H, Ohyama K, Kim Y Y, et al . The role of Arabidopsis ABCG9 and ABCG31 ATP binding cassette transporters in pollen fitness and the deposition of steryl glycosides on the pollen coat. The Plant Cell, 2014, 26: 310-324.
[62]  Qin P, Tu B, Wang Y, et al . ABCG 15 encodes an ABC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice. Plant & Cell Physiology, 2013, 54: 138-154.
[63]  Weston L A, Ryan P R, Watt M. Mechanisms for cellular transport and release of allelochemicals from plant root into the rhizosphere. Journal of Experimental Botany, 2012, 63: 3445-3454.
[64]  Campbell E J, Schenk P M, Kazan K, et al . Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis . Plant Physiology, 2003, 133: 1272-1284.
[65]  Stukkens Y, Bultreys A, Grec S, et al . NpPDR1, a pleiotropic drug resistance-type ATP binding cassette transporter from Nicotiana plumbaginifolia , plays a major role in plant pathogen defense. Plant Physiology, 2005, 139: 341-352.
[66]  Kobae Y, Sekino T, Yoshioka H, et al . Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana , causes hypersensitive cell death upon pathogen infection. Plant Cell Physiology, 2006, 47: 309-318.
[67]  Stein M, Dittgen J, Sanchez-Rodriguez C, et al . Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to non-host resistance to inappropriate pathogens that enter by direct penetration. The Plant Cell, 2006, 18: 731-746.
[68]  Sasabe M, Toyoda K, Shiraishi T, et al . cDNA cloning and characterization of tobacco ABC transporter: NtPDR1 is a novel elicitor-responsive gene. FEBS Letters, 2002, 518: 164-168.
[69]  Crouzet J, Roland J, Peeters E, et al . NtPDR1, a plasma membrane ABC transporter from Nicotiana tabacum , is involved in diterpene transport. Plant Molecular Biology, 2013, 82: 181-192.
[70]  Bultreys A, Trombik T, Drozak A, et al . Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR 1 show increased susceptibility to a group of fungal and oomycete pathogens. Molecular Plant Pathology, 2009, 10: 651-663.
[71]  Eichhorn H, Klinghammer M, Becht P, et al . Isolation of a novel ABC-transporter gene from soybean induced by salicylic acid. Journal of Experimental Botany, 2006, 57: 2193-2201.
[72]  Moons A. Transcriptional profiling of the PDR gene family in rice roots in response to plant growth regulators, redox perturbations and weak organic acid stresses. Planta, 2008, 229: 53-71.
[73]  Krattinger S G, Lagudah E S, Spielmeyer W, et al . A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 2009, 323: 1360-1363.
[74]  Banasiak J, Biała W, Staszków A, et al . A Medicago truncatula ABC transporter belonging to subfamily G modulates the level of isoflavonoids. Journal of Experimental Botany, 2013, 64: 1005-1015.
[75]  Bienert M D, Gerlitz S E, Drozak A, et al . A pleiotropic drug resistance transporter in Nicotiana tabacum is involved in defense against the herbivore Manduca sexta . The Plant Journal, 2012, 72: 745-757.
[76]  Sugiyama A, Shitan N, Yazaki K. Involvement of a soybean ATP binding cassette-type transporter in the secretion of genistein, a signal flavonoid in legume-rhizobium symbiosis. Plant Physiology, 2007, 144: 2000-2008.
[77]  Sugiyama A, Shitan N, Yazaki K. Signaling from soybean roots to rhizobium, an ATP-binding casstte-type transporter mediates genistein secretion. Plant Signaling & Behavior, 2008, 3: 38-40.
[78]  Zhang Q, Blaylock L A, Harrison M J. Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. The Plant Cell, 2010, 22: 1483-1497.
[79]  Gutjahr C, Radovanovic D, Geoffroy J, et al . The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. The Plant Journal, 2012, 69: 906-920.
[80]  陈伟, 张苗苗, 宋阳阳, 等. 重金属离子对2种草坪草荧光特性及根系形态的影响. 草业学报, 2014, 23(3): 333-342. 浏览
[81]  李西, 吴亚娇, 孙凌霞. 铅胁迫对三种暖季型草坪草生长和生理特性的影响. 草业学报, 2014, 23(4): 171-180. 浏览
[82]  高海宁, 马国泰, 李彩霞, 等. 菌剂对铬污染土壤中坪草幼苗生理生化的影响. 草业学报, 2014, 23(4): 189-194. 浏览
[83]  杨海霞, 刘润进, 郭绍霞. AM真菌摩西球囊霉对盐胁迫条件下高羊茅生长特性的影响. 草业学报, 2014, 23(4): 195-203. 浏览
[84]  吴强盛, 袁芳英, 费永俊, 等. 丛枝菌根真菌对白三叶根系构型和糖含量的影响. 草业学报, 2014, 23(1): 199-204. 浏览
[85]  李婧婧, 黄俊华, 谢树成. 植物蜡质及其与环境的关系. 生态学报, 2011, 31(2): 565-574.
[86]  黄利春, 金樑, 张树振, 等. 蝶形花亚科植物花粉释放机制. 草业学报, 2013, 22(6): 305-314. 浏览

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133