Ranathunge K, Lin J, Steudle E, et al . Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice ( Oryza sativa L.) roots. Plant Cell Environment, 2011, 34: 1223-1240.
[2]
Seago Jr. J L, Peterson C A, Enstone D E, et al . Development of the endodermis and hypodermis of Typha glauca Godr. and T. angustifolia L. roots. Canadian Journal of Botany, 1999, 77: 122-134.
[3]
Soukup A, Votrubová O, Ǒížková H. Development of anatomical structure of roots of Phragmites australis . New Phytologist, 2002, 153: 277-287.
[4]
Soukup A, Armstrong W, Schreiber L, et al . Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima . New Phytologist, 2007, 173: 264-278.
[5]
Vecchia F D, Cuccato F, Rocca N L, et al . Endodermis-like sheaths in the submerged freshwater macrophyte Ranunculus trichophyllus Chaix. Annals of Botany,1999, 83: 93-97.
[6]
Yang C D, Zhang X, Zhou C Y, et al . Root and stem anatomy and histochemistry of four grasses from the Jianghan Floodplain along the Yangtze River, China. Flora, 2011, 206: 653-661.
[7]
Seago Jr. J L, Marsh L C, Stevens K J, et al . A re-examination of the root cortex in wetland flowering plants with respect to aerenchyma. Annals of Botany, 2005, 96: 565-579.
[8]
Yang C, Zhang X, Li J, et al . Anatomy and histochemistry of roots and shoots in wild rice ( Zizania latifolia Griseb.). Journal of Botany, 2014, 2014: http://dx.doi.org/10.1155/2014/181727.
[9]
Liu L L, Yang X, Gao T P, et al . A study on the attractive function of different floral structures in Trollius ranunculoides (Ranunculaceae). Acta Prataculturae Sinica, 2013, 22(3): 190-195.
[10]
Lu Q L, Chai S X, Zhang L J, et al . Contribution of winter wheat leaf and non-leaf organs to grain weight. Acta Prataculturae Sinica, 2013, 22(5): 165-174.
[11]
Zhang X X, Liu M, Cheng X Y, et al . Comparative study of the morphological and anatomical features of Lindernia procumbens in different ecological environments (Lindernuacea). Acta Prataculturae Sinica, 2014, 23(2): 235-242.
[12]
Pauluzzi G, Divol F, Puig J, et al . Surfing along the root ground tissue gene network. Developmental Biology, 2012, 365: 14-22.
[13]
Roppolo D, De Rybel B, Tendon V D, et al . A novel protein family mediates Casparian strip formation in the endodermis. Nature, 2011, 473: 380-383.
[14]
Alassimone J, Roppolo D, Geldner N, et al . The endodermis-development and differentiation of the plant’s inner skin. Protoplasma, 2012, 249(3): 433-443.
[15]
Geldner N. The endodermis. Annual Review in Plant Biology, 2013, 64: 531-558.
[16]
Naseer S, Leea Y, Lapierre C, et al . Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proceedings of the National Academy of Science USA, 2012, 109: 10101-10106.
[17]
Brundrett M C, Enstone D E, Peterson C A. A berberine-aniline blue fluorescent staining procedure for suberin, lignin and callose in plant tissue. Protoplasma, 1988, 146: 133-142.
[18]
Gu Z H, Xiang G H, Peng Y L. An introduction test of Hydrocotyle sibthorpoioides , a new type of lawn grass. Guizhou Agricultural Sciences, 2009, 37(10): 19-20.
[19]
Zhang L, Zhang D Z. Research advance on progress of Hydrocotyle sibthorpoioides . Journal of Modern Food and Pharmaceuticals, 2007, 17(1): 15-17.
[20]
Armstrong J, Jones R E, Armstrong W. Rhizome phyllosphere oxygenation in Phragmites and other species in relation to redox potential, convective gas flow, submergence and aeration pathways. New Phytologist, 2006, 172: 719-731.
[21]
Colmer T D, Gibberd M R, Wiengweera A, et al . The barrier to radial oxygen loss from roots of rice ( Oryza sativa L.) is induced by growth in stagnant solutions. Journal of Experimental Botany, 1998, 49: 1431-1436.
[22]
Greenway H, Armstrong W, Colmer T D. Conditions leading to high CO 2 (>5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism. Annals of Botany, 2006, 98: 9-32.
[23]
Yang C D, Zhang X, Liu G F, et al . Progress on the structure and physiological functions of apoplastic barriers in root. Bulletin of Botanical Research, 2013, 33(1):114-119.
[24]
Yang C D, Zhang X. Permeability and supplement structures of stems of Paspalum distichum . Bulletin of Botanical Research, 2013, 33(5): 564-568.
[25]
Enstone D E, Peterson C A, Ma F. Root endodermis and exodermis: structure, function, and responses to the environment. Journal of Plant Growth Regulation, 2003, 21: 335-351.
[26]
Mc Manus H A, Seago Jr J L, Marsh L C. Epifluorescent and histochemical aspects of shoot anatomy of Typha latifolia L., Typha angustifolia L. and Typha glauca Godr. Annals of Botany, 2002, 90: 489-493.
[27]
Meyer C J, Peterson C A. Casparian bands occur in the periderm of Pelargonium hortorum stem and root. Annals of Botany, 2011, 107: 591-598.
[28]
Schreiber L, Franke R B. Endodermis and Exodermis in Roots eLSM. Chichester: John Wiley and Sons Ltd. 2011. doi:10.1002/9780470015902. a0002086. pub2.
[29]
Martins M B G, Marconi A P, Cavalheiro A J, et al . Anatomical and chemical characterization of the leaf and root system of Hydrocotyle umbellata (Apiaceae). Brazilian Journal of Pharmacognosy, 2008, 18(3): 402-414.
[30]
De Simone O, Haase K, Müller E, et al . Apoplastic barriers and oxygen transport properties of hypodermal cell walls in roots from four Amazonian tree species. Plant Physiologist, 2003, 132: 206-217.
[31]
Krishnamurthy P, Jyothi-Prakash P A, Qin L, et al . Role of root hydrophobic barriers in salt exclusion of a mangrove plant Avicennia officinalis . Plant, Cell Environment, 2014, doi:10.1111/pce.12272.
[32]
Abiko T, Kotula L, Shiono K, et al . Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize ( Zea mays ssp. mays). Plant Cell Environment, 2012, 35: 1618-1630.
[33]
Zhang X, Yang C D, Ning G G. The developmental comparison of apoplastic barriers in Cynodon dactylon and Paspalum distichum roots. Hubei Agricultural Sciences, 2013, 52(20): 4991-4994.
[34]
Watanabe H, Saigusa M, Morita S. Identification of Casparian bands in the mesocotyl and lower internodes of rice ( Oryza sativa L.) seedlings using fluorescence microscopy. Plant Production Science, 2006, 9: 390-394.
Brundrett M C, Kendrick B, Peterson C A. Efficient lipid staining in plant material with Sudan red 7B or Fluorol yellow 088 in polyethylene glycol-glycerol. Biotechnic and Histochemistry, 1991, 66: 111-116.