全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

天胡荽的解剖和屏障结构特征研究

DOI: 10.11686/cyxb2014246, PP. 139-145

Keywords: 天胡荽,解剖结构,质外体屏障结构,组织化学,初生结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用光学显微镜和荧光显微镜对天胡荽进行了解剖学和组织化学研究,结果表明,1)天胡荽不定根为初生结构,具二原型维管柱、内皮层、皮层、外皮层和表皮。2)茎、花柄和叶主要为初生结构,除了茎和花柄维管束具次生结构,具表皮、厚角组织、皮层、内皮层、维管束和髓;茎具诱导型通气组织。3)天胡荽不定根的屏障结构包括内侧的有凯氏带且栓质化的内皮层,外侧的有凯氏带且栓质化的外皮层和紧邻外侧具扩散状栓质层的表皮细胞;匍匐茎、花柄和叶柄具相似的质外体屏障结构,一是内侧的有凯氏带且栓质化的内皮层,二是外侧的表皮外角质层,但花柄和叶柄有凯氏带的细胞,并不栓质化;叶片的仅为表皮外角质层。4)天胡荽的解剖和屏障结构特征是其适应多种水湿环境的结构基础。该研究为今后选择湿地生态修复植物提供线索。

References

[1]  Ranathunge K, Lin J, Steudle E, et al . Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice ( Oryza sativa L.) roots. Plant Cell Environment, 2011, 34: 1223-1240.
[2]  Seago Jr. J L, Peterson C A, Enstone D E, et al . Development of the endodermis and hypodermis of Typha glauca Godr. and T. angustifolia L. roots. Canadian Journal of Botany, 1999, 77: 122-134.
[3]  Soukup A, Votrubová O, Ǒížková H. Development of anatomical structure of roots of Phragmites australis . New Phytologist, 2002, 153: 277-287.
[4]  Soukup A, Armstrong W, Schreiber L, et al . Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima . New Phytologist, 2007, 173: 264-278.
[5]  Vecchia F D, Cuccato F, Rocca N L, et al . Endodermis-like sheaths in the submerged freshwater macrophyte Ranunculus trichophyllus Chaix. Annals of Botany,1999, 83: 93-97.
[6]  Yang C D, Zhang X, Zhou C Y, et al . Root and stem anatomy and histochemistry of four grasses from the Jianghan Floodplain along the Yangtze River, China. Flora, 2011, 206: 653-661.
[7]  Seago Jr. J L, Marsh L C, Stevens K J, et al . A re-examination of the root cortex in wetland flowering plants with respect to aerenchyma. Annals of Botany, 2005, 96: 565-579.
[8]  Yang C, Zhang X, Li J, et al . Anatomy and histochemistry of roots and shoots in wild rice ( Zizania latifolia Griseb.). Journal of Botany, 2014, 2014: http://dx.doi.org/10.1155/2014/181727.
[9]  Liu L L, Yang X, Gao T P, et al . A study on the attractive function of different floral structures in Trollius ranunculoides (Ranunculaceae). Acta Prataculturae Sinica, 2013, 22(3): 190-195.
[10]  Lu Q L, Chai S X, Zhang L J, et al . Contribution of winter wheat leaf and non-leaf organs to grain weight. Acta Prataculturae Sinica, 2013, 22(5): 165-174.
[11]  Zhang X X, Liu M, Cheng X Y, et al . Comparative study of the morphological and anatomical features of Lindernia procumbens in different ecological environments (Lindernuacea). Acta Prataculturae Sinica, 2014, 23(2): 235-242.
[12]  Pauluzzi G, Divol F, Puig J, et al . Surfing along the root ground tissue gene network. Developmental Biology, 2012, 365: 14-22.
[13]  Roppolo D, De Rybel B, Tendon V D, et al . A novel protein family mediates Casparian strip formation in the endodermis. Nature, 2011, 473: 380-383.
[14]  Alassimone J, Roppolo D, Geldner N, et al . The endodermis-development and differentiation of the plant’s inner skin. Protoplasma, 2012, 249(3): 433-443.
[15]  Geldner N. The endodermis. Annual Review in Plant Biology, 2013, 64: 531-558.
[16]  Naseer S, Leea Y, Lapierre C, et al . Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proceedings of the National Academy of Science USA, 2012, 109: 10101-10106.
[17]  Brundrett M C, Enstone D E, Peterson C A. A berberine-aniline blue fluorescent staining procedure for suberin, lignin and callose in plant tissue. Protoplasma, 1988, 146: 133-142.
[18]  Gu Z H, Xiang G H, Peng Y L. An introduction test of Hydrocotyle sibthorpoioides , a new type of lawn grass. Guizhou Agricultural Sciences, 2009, 37(10): 19-20.
[19]  Zhang L, Zhang D Z. Research advance on progress of Hydrocotyle sibthorpoioides . Journal of Modern Food and Pharmaceuticals, 2007, 17(1): 15-17.
[20]  Armstrong J, Jones R E, Armstrong W. Rhizome phyllosphere oxygenation in Phragmites and other species in relation to redox potential, convective gas flow, submergence and aeration pathways. New Phytologist, 2006, 172: 719-731.
[21]  Colmer T D, Gibberd M R, Wiengweera A, et al . The barrier to radial oxygen loss from roots of rice ( Oryza sativa L.) is induced by growth in stagnant solutions. Journal of Experimental Botany, 1998, 49: 1431-1436.
[22]  Greenway H, Armstrong W, Colmer T D. Conditions leading to high CO 2 (>5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism. Annals of Botany, 2006, 98: 9-32.
[23]  Yang C D, Zhang X, Liu G F, et al . Progress on the structure and physiological functions of apoplastic barriers in root. Bulletin of Botanical Research, 2013, 33(1):114-119.
[24]  Yang C D, Zhang X. Permeability and supplement structures of stems of Paspalum distichum . Bulletin of Botanical Research, 2013, 33(5): 564-568.
[25]  Enstone D E, Peterson C A, Ma F. Root endodermis and exodermis: structure, function, and responses to the environment. Journal of Plant Growth Regulation, 2003, 21: 335-351.
[26]  Mc Manus H A, Seago Jr J L, Marsh L C. Epifluorescent and histochemical aspects of shoot anatomy of Typha latifolia L., Typha angustifolia L. and Typha glauca Godr. Annals of Botany, 2002, 90: 489-493.
[27]  Meyer C J, Peterson C A. Casparian bands occur in the periderm of Pelargonium hortorum stem and root. Annals of Botany, 2011, 107: 591-598.
[28]  Schreiber L, Franke R B. Endodermis and Exodermis in Roots eLSM. Chichester: John Wiley and Sons Ltd. 2011. doi:10.1002/9780470015902. a0002086. pub2.
[29]  Martins M B G, Marconi A P, Cavalheiro A J, et al . Anatomical and chemical characterization of the leaf and root system of Hydrocotyle umbellata (Apiaceae). Brazilian Journal of Pharmacognosy, 2008, 18(3): 402-414.
[30]  De Simone O, Haase K, Müller E, et al . Apoplastic barriers and oxygen transport properties of hypodermal cell walls in roots from four Amazonian tree species. Plant Physiologist, 2003, 132: 206-217.
[31]  Krishnamurthy P, Jyothi-Prakash P A, Qin L, et al . Role of root hydrophobic barriers in salt exclusion of a mangrove plant Avicennia officinalis . Plant, Cell Environment, 2014, doi:10.1111/pce.12272.
[32]  Abiko T, Kotula L, Shiono K, et al . Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize ( Zea mays ssp. mays). Plant Cell Environment, 2012, 35: 1618-1630.
[33]  Zhang X, Yang C D, Ning G G. The developmental comparison of apoplastic barriers in Cynodon dactylon and Paspalum distichum roots. Hubei Agricultural Sciences, 2013, 52(20): 4991-4994.
[34]  Watanabe H, Saigusa M, Morita S. Identification of Casparian bands in the mesocotyl and lower internodes of rice ( Oryza sativa L.) seedlings using fluorescence microscopy. Plant Production Science, 2006, 9: 390-394.
[35]  顾振华, 向国红, 彭友林. 天胡荽新型草坪引种试验研究. 贵州农业科学, 2009, 37(10): 19-20.
[36]  张兰, 张德志. 天胡荽的研究进展. 现代食品与药品杂志, 2007, 17(1): 15-17.
[37]  杨朝东, 张霞, 刘国锋, 等. 植物根中质外体屏障结构和生理功能研究进展. 植物研究, 2013, 33(1): 114-119.
[38]  杨朝东, 张霞. 双穗雀稗( Paspalum distichum )通透性生理和茎解剖结构补充研究. 植物研究, 2013, 33(5): 564-568.
[39]  刘乐乐, 杨晓, 高天鹏, 等. 毛茛状金莲花花部结构的吸引功能. 草业学报, 2013, 22(3): 190-195. 浏览
[40]  鲁清林, 柴守玺, 张礼军, 等. 冬小麦叶片和非叶器官对粒重的贡献. 草业学报, 2013, 22(5): 165-174. 浏览
[41]  张欣欣, 刘玫, 程薪宇, 等. 不同生境下陌上菜的形态解剖学比较. 草业学报, 2014, 23(2): 235-242.
[42]  张霞, 杨朝东, 宁国贵. 狗牙根和双穗雀稗根中质外体屏障结构发育过程的比较研究. 湖北农业科学, 2013, 52(20): 4991-4994.
[43]  Brundrett M C, Kendrick B, Peterson C A. Efficient lipid staining in plant material with Sudan red 7B or Fluorol yellow 088 in polyethylene glycol-glycerol. Biotechnic and Histochemistry, 1991, 66: 111-116.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133